BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 18394957)

  • 1. Evolutionary analysis of synteny and gene fusion for pyrimidine biosynthetic enzymes in Euglenozoa: an extraordinary gap between kinetoplastids and diplonemids.
    Makiuchi T; Annoura T; Hashimoto T; Murata E; Aoki T; Nara T
    Protist; 2008 Jul; 159(3):459-70. PubMed ID: 18394957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of multiple, independent gene fusion events for the fifth and sixth enzymes of pyrimidine biosynthesis in different eukaryotic groups.
    Makiuchi T; Nara T; Annoura T; Hashimoto T; Aoki T
    Gene; 2007 Jun; 394(1-2):78-86. PubMed ID: 17383832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of euglenozoa.
    von der Heyden S; Chao EE; Vickerman K; Cavalier-Smith T
    J Eukaryot Microbiol; 2004; 51(4):402-16. PubMed ID: 15352322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel organization and sequences of five genes encoding all six enzymes for de novo pyrimidine biosynthesis in Trypanosoma cruzi.
    Gao G; Nara T; Nakajima-Shimada J; Aoki T
    J Mol Biol; 1999 Jan; 285(1):149-61. PubMed ID: 9878395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diplonemid glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and prokaryote-to-eukaryote lateral gene transfer.
    Qian Q; Keeling PJ
    Protist; 2001 Sep; 152(3):193-201. PubMed ID: 11693658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compartmentalization of a glycolytic enzyme in Diplonema, a non-kinetoplastid euglenozoan.
    Makiuchi T; Annoura T; Hashimoto M; Hashimoto T; Aoki T; Nara T
    Protist; 2011 Jul; 162(3):482-9. PubMed ID: 21377422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic affinities of Diplonema within the Euglenozoa as inferred from the SSU rRNA gene and partial COI protein sequences.
    Maslov DA; Yasuhira S; Simpson L
    Protist; 1999 Mar; 150(1):33-42. PubMed ID: 10724517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of dihydroorotate dehydrogenase genes of kinetoplastids, with special reference to their biological significance and adaptation to anaerobic, parasitic conditions.
    Annoura T; Nara T; Makiuchi T; Hashimoto T; Aoki T
    J Mol Evol; 2005 Jan; 60(1):113-27. PubMed ID: 15696374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenomic analysis of kinetoplastids supports that trypanosomatids arose from within bodonids.
    Deschamps P; Lara E; Marande W; López-García P; Ekelund F; Moreira D
    Mol Biol Evol; 2011 Jan; 28(1):53-8. PubMed ID: 21030427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triosephosphate isomerase genes in two trophic modes of euglenoids (euglenophyceae) and their phylogenetic analysis.
    Sun GL; Shen W; Wen JF
    J Eukaryot Microbiol; 2008; 55(3):170-7. PubMed ID: 18460154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early evolution within kinetoplastids (euglenozoa), and the late emergence of trypanosomatids.
    Simpson AG; Gill EE; Callahan HA; Litaker RW; Roger AJ
    Protist; 2004 Dec; 155(4):407-22. PubMed ID: 15648721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene transfers from nanoarchaeota to an ancestor of diplomonads and parabasalids.
    Andersson JO; Sarchfield SW; Roger AJ
    Mol Biol Evol; 2005 Jan; 22(1):85-90. PubMed ID: 15356278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Typical structure of rRNA coding genes in diplonemids points to two independent origins of the bizarre rDNA structures of euglenozoans.
    Hałakuc P; Karnkowska A; Milanowski R
    BMC Ecol Evol; 2022 May; 22(1):59. PubMed ID: 35534840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ornithine decarboxylase gene of Trypanosoma brucei: Evidence for horizontal gene transfer from a vertebrate source.
    Steglich C; Schaeffer SW
    Infect Genet Evol; 2006 May; 6(3):205-19. PubMed ID: 16344004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into the phylogenetic position of diplonemids: G+C content bias, differences of evolutionary rate and a new environmental sequence.
    Moreira D; López-García P; Rodríguez-Valera F
    Int J Syst Evol Microbiol; 2001 Nov; 51(Pt 6):2211-2219. PubMed ID: 11760964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans.
    Rodríguez-Ezpeleta N; Brinkmann H; Burger G; Roger AJ; Gray MW; Philippe H; Lang BF
    Curr Biol; 2007 Aug; 17(16):1420-5. PubMed ID: 17689961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogeny of phagotrophic euglenids (Euglenozoa) as inferred from hsp90 gene sequences.
    Breglia SA; Slamovits CH; Leander BS
    J Eukaryot Microbiol; 2007; 54(1):86-92. PubMed ID: 17300525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Pax1/9 locus reveals 500-Myr-old syntenic block and evolutionary conserved noncoding regions.
    Wang W; Zhong J; Su B; Zhou Y; Wang YQ
    Mol Biol Evol; 2007 Mar; 24(3):784-91. PubMed ID: 17182894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraordinary conservation, gene loss, and positive selection in the evolution of an ancient neurotoxin.
    Murray SA; Mihali TK; Neilan BA
    Mol Biol Evol; 2011 Mar; 28(3):1173-82. PubMed ID: 21076133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do cnidarians have a ParaHox cluster? Analysis of synteny around a Nematostella homeobox gene cluster.
    Hui JH; Holland PW; Ferrier DE
    Evol Dev; 2008; 10(6):725-30. PubMed ID: 19021743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.