These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 18394957)

  • 21. Differential remodelling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids.
    Morales J; Hashimoto M; Williams TA; Hirawake-Mogi H; Makiuchi T; Tsubouchi A; Kaga N; Taka H; Fujimura T; Koike M; Mita T; Bringaud F; Concepción JL; Hashimoto T; Embley TM; Nara T
    Proc Biol Sci; 2016 May; 283(1830):. PubMed ID: 27170716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss.
    Malik SB; Ramesh MA; Hulstrand AM; Logsdon JM
    Mol Biol Evol; 2007 Dec; 24(12):2827-41. PubMed ID: 17921483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An oxygen molecular sensor, the HIF prolyl 4-hydroxylase, in the marine protist Perkinsus olseni.
    Leite RB; Brito AB; Cancela ML
    Protist; 2008 Jul; 159(3):355-68. PubMed ID: 18539525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial group II introns in the raphidophycean flagellate Chattonella spp. suggest a diatom-to-Chattonella lateral group II intron transfer.
    Kamikawa R; Masuda I; Demura M; Oyama K; Yoshimatsu S; Kawachi M; Sako Y
    Protist; 2009 Aug; 160(3):364-75. PubMed ID: 19346162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids.
    Marande W; Lukes J; Burger G
    Eukaryot Cell; 2005 Jun; 4(6):1137-46. PubMed ID: 15947205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A single-cell genome reveals diplonemid-like ancestry of kinetoplastid mitochondrial gene structure.
    Wideman JG; Lax G; Leonard G; Milner DS; Rodríguez-Martínez R; Simpson AGB; Richards TA
    Philos Trans R Soc Lond B Biol Sci; 2019 Nov; 374(1786):20190100. PubMed ID: 31587636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids.
    Butenko A; Opperdoes FR; Flegontova O; Horák A; Hampl V; Keeling P; Gawryluk RMR; Tikhonenkov D; Flegontov P; Lukeš J
    BMC Biol; 2020 Mar; 18(1):23. PubMed ID: 32122335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes.
    Valach M; Moreira S; Petitjean C; Benz C; Butenko A; Flegontova O; Nenarokova A; Prokopchuk G; Batstone T; Lapébie P; Lemogo L; Sarrasin M; Stretenowich P; Tripathi P; Yazaki E; Nara T; Henrissat B; Lang BF; Gray MW; Williams TA; Lukeš J; Burger G
    BMC Biol; 2023 May; 21(1):99. PubMed ID: 37143068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phylogeny, taxonomy, and evolution of the endothelin receptor gene family.
    Hyndman KA; Miyamoto MM; Evans DH
    Mol Phylogenet Evol; 2009 Sep; 52(3):677-87. PubMed ID: 19410007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transformation of Diplonema papillatum, the type species of the highly diverse and abundant marine microeukaryotes Diplonemida (Euglenozoa).
    Kaur B; Valach M; Peña-Diaz P; Moreira S; Keeling PJ; Burger G; Lukeš J; Faktorová D
    Environ Microbiol; 2018 Mar; 20(3):1030-1040. PubMed ID: 29318727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative genomics of trypanosomatid parasitic protozoa.
    El-Sayed NM; Myler PJ; Blandin G; Berriman M; Crabtree J; Aggarwal G; Caler E; Renauld H; Worthey EA; Hertz-Fowler C; Ghedin E; Peacock C; Bartholomeu DC; Haas BJ; Tran AN; Wortman JR; Alsmark UC; Angiuoli S; Anupama A; Badger J; Bringaud F; Cadag E; Carlton JM; Cerqueira GC; Creasy T; Delcher AL; Djikeng A; Embley TM; Hauser C; Ivens AC; Kummerfeld SK; Pereira-Leal JB; Nilsson D; Peterson J; Salzberg SL; Shallom J; Silva JC; Sundaram J; Westenberger S; White O; Melville SE; Donelson JE; Andersson B; Stuart KD; Hall N
    Science; 2005 Jul; 309(5733):404-9. PubMed ID: 16020724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diplonemids - A Review on "New" Flagellates on the Oceanic Block.
    Tashyreva D; Simpson AGB; Prokopchuk G; Škodová-Sveráková I; Butenko A; Hammond M; George EE; Flegontova O; Záhonová K; Faktorová D; Yabuki A; Horák A; Keeling PJ; Lukeš J
    Protist; 2022 Apr; 173(2):125868. PubMed ID: 35339983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phylogenetic analysis of the triterpene cyclase protein family in prokaryotes and eukaryotes suggests bidirectional lateral gene transfer.
    Frickey T; Kannenberg E
    Environ Microbiol; 2009 May; 11(5):1224-41. PubMed ID: 19207562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa.
    Vesteg M; Hadariová L; Horváth A; Estraño CE; Schwartzbach SD; Krajčovič J
    Biol Rev Camb Philos Soc; 2019 Oct; 94(5):1701-1721. PubMed ID: 31095885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomic organization of the immunoglobulin light chain gene loci in Xenopus tropicalis: evolutionary implications.
    Qin T; Ren L; Hu X; Guo Y; Fei J; Zhu Q; Butler JE; Wu C; Li N; Hammarstrom L; Zhao Y
    Dev Comp Immunol; 2008; 32(2):156-65. PubMed ID: 17624429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps.
    Tang H; Wang X; Bowers JE; Ming R; Alam M; Paterson AH
    Genome Res; 2008 Dec; 18(12):1944-54. PubMed ID: 18832442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pan-oceanic distribution of new highly diverse clades of deep-sea diplonemids.
    Lara E; Moreira D; Vereshchaka A; López-García P
    Environ Microbiol; 2009 Jan; 11(1):47-55. PubMed ID: 18803646
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A cryptic algal group unveiled: a plastid biosynthesis pathway in the oyster parasite Perkinsus marinus.
    Matsuzaki M; Kuroiwa H; Kuroiwa T; Kita K; Nozaki H
    Mol Biol Evol; 2008 Jun; 25(6):1167-79. PubMed ID: 18359776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The RJL family of small GTPases is an ancient eukaryotic invention probably functionally associated with the flagellar apparatus.
    Elias M; Archibald JM
    Gene; 2009 Aug; 442(1-2):63-72. PubMed ID: 19393304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Miniature RNAs are embedded in an exceptionally protein-rich mitoribosome via an elaborate assembly pathway.
    Valach M; Benz C; Aguilar LC; Gahura O; Faktorová D; Zíková A; Oeffinger M; Burger G; Gray MW; Lukeš J
    Nucleic Acids Res; 2023 Jul; 51(12):6443-6460. PubMed ID: 37207340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.