BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 18395004)

  • 1. Catalytic mechanism of inulinase from Arthrobacter sp. S37.
    Kim KY; Nascimento AS; Golubev AM; Polikarpov I; Kim CS; Kang SI; Kim SI
    Biochem Biophys Res Commun; 2008 Jul; 371(4):600-5. PubMed ID: 18395004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the N-terminal domain of endoinulinase from Arthrobacter sp. S37 in regulation of enzyme catalysis.
    Kim KY; Rhee S; Kim SI
    J Biochem; 2005 Jul; 138(1):27-33. PubMed ID: 16046445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paenibacillus sp. TS12 glucosylceramidase: kinetic studies of a novel sub-family of family 3 glycosidases and identification of the catalytic residues.
    Paal K; Ito M; Withers SG
    Biochem J; 2004 Feb; 378(Pt 1):141-9. PubMed ID: 14561218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues.
    Bolam DN; Hughes N; Virden R; Lakey JH; Hazlewood GP; Henrissat B; Braithwaite KL; Gilbert HJ
    Biochemistry; 1996 Dec; 35(50):16195-204. PubMed ID: 8973192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.
    Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS
    Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycosynthase activity of Bacillus licheniformis 1,3-1,4-beta-glucanase mutants: specificity, kinetics, and mechanism.
    Faijes M; Pérez X; Pérez O; Planas A
    Biochemistry; 2003 Nov; 42(45):13304-18. PubMed ID: 14609341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis of active site residues of phosphite dehydrogenase.
    Woodyer R; Wheatley JL; Relyea HA; Rimkus S; van der Donk WA
    Biochemistry; 2005 Mar; 44(12):4765-74. PubMed ID: 15779903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid-base catalysis in Leuconostoc mesenteroides sucrose phosphorylase probed by site-directed mutagenesis and detailed kinetic comparison of wild-type and Glu237-->Gln mutant enzymes.
    Schwarz A; Brecker L; Nidetzky B
    Biochem J; 2007 May; 403(3):441-9. PubMed ID: 17233628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Asp174 and Asp175 as the key catalytic residues of human O-GlcNAcase by functional analysis of site-directed mutants.
    Cetinbaş N; Macauley MS; Stubbs KA; Drapala R; Vocadlo DJ
    Biochemistry; 2006 Mar; 45(11):3835-44. PubMed ID: 16533067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase.
    Wakarchuk WW; Campbell RL; Sung WL; Davoodi J; Yaguchi M
    Protein Sci; 1994 Mar; 3(3):467-75. PubMed ID: 8019418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae.
    Qian J; Khandogin J; West AH; Cook PF
    Biochemistry; 2008 Jul; 47(26):6851-8. PubMed ID: 18533686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing pH-dependent functional elements in proteins: modification of carboxylic acid pairs in Trichoderma reesei cellobiohydrolase Cel6A.
    Wohlfahrt G; Pellikka T; Boer H; Teeri TT; Koivula A
    Biochemistry; 2003 Sep; 42(34):10095-103. PubMed ID: 12939137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the catalytic mechanism of pyruvate dehydrogenase kinase.
    Tovar-Méndez A; Hirani TA; Miernyk JA; Randall DD
    Arch Biochem Biophys; 2005 Feb; 434(1):159-68. PubMed ID: 15629119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic mechanism of retaining alpha-galactosidase belonging to glycoside hydrolase family 97.
    Okuyama M; Kitamura M; Hondoh H; Kang MS; Mori H; Kimura A; Tanaka I; Yao M
    J Mol Biol; 2009 Oct; 392(5):1232-41. PubMed ID: 19646996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism, mutagenesis, and chemical rescue of a beta-mannosidase from cellulomonas fimi.
    Zechel DL; Reid SP; Stoll D; Nashiru O; Warren RA; Withers SG
    Biochemistry; 2003 Jun; 42(23):7195-204. PubMed ID: 12795616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Pyrococcus furiosus amylopullulanase catalytic residues.
    Kang S; Vieille C; Zeikus JG
    Appl Microbiol Biotechnol; 2005 Jan; 66(4):408-13. PubMed ID: 15599521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site of epoxide hydrolases revisited: a noncanonical residue in potato StEH1 promotes both formation and breakdown of the alkylenzyme intermediate.
    Thomaeus A; Carlsson J; Aqvist J; Widersten M
    Biochemistry; 2007 Mar; 46(9):2466-79. PubMed ID: 17284015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of an inhibitor binding site of poly(ADP-ribose) glycohydrolase.
    Koh DW; Patel CN; Ramsinghani S; Slama JT; Oliveira MA; Jacobson MK
    Biochemistry; 2003 May; 42(17):4855-63. PubMed ID: 12718526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.