These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 183951)
1. The inhibition of isocitrate oxidation by palmitoyl-l-carnitine and palmitoyl-C0 A in rat liver mitochondria. Lenartowicz E; Winter C; Kunz W; Wojtczak AB Eur J Biochem; 1976 Aug; 67(1):137-44. PubMed ID: 183951 [TBL] [Abstract][Full Text] [Related]
2. On the capacity of the beta-oxidation of palmitate and palmitoyl-esters in rat liver mitochondria. Farstad M; Berge R Acta Physiol Scand; 1978 Nov; 104(3):337-48. PubMed ID: 31061 [TBL] [Abstract][Full Text] [Related]
3. The effects of coenzyme A and carnitine on steady-state ATP/ADP ratios and the rate of long-chain free fatty acid oxidation in liver mitochondria. Christiansen EN; Davis EJ Biochim Biophys Acta; 1978 Apr; 502(1):17-28. PubMed ID: 638140 [TBL] [Abstract][Full Text] [Related]
4. Studies on the influence of fatty acids on pyruvate dehydrogenase interconversion in rat-liver mitochondria. Walajtys-Rode EI Eur J Biochem; 1976 Dec; 71(1):229-37. PubMed ID: 1009949 [TBL] [Abstract][Full Text] [Related]
5. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of the free acids and their carnitine esters on coenzyme A-dependent oxidations in rat liver mitochondria. Holland PC; Sherratt HS Biochem J; 1973 Sep; 136(1):157-71. PubMed ID: 4772622 [TBL] [Abstract][Full Text] [Related]
6. The possible role of palmitoyl-CoA in the regulation of the adenine nucleotides transport in mitochondria under different metabolic states. I. Comparison of liver mitochondria from starved and fed rats. Panov AV; Konstantinov YM; Lyakhovich VV J Bioenerg; 1975 May; 7(2):75-85. PubMed ID: 1184579 [TBL] [Abstract][Full Text] [Related]
7. Studies on the effects of coenzyme A-SH: acetyl coenzyme A, nicotinamide adenine dinucleotide: reduced nicotinamide adenine dinucleotide, and adenosine diphosphate: adenosine triphosphate ratios on the interconversion of active and inactive pyruvate dehydrogenase in isolated rat heart mitochondria. Hansford RG J Biol Chem; 1976 Sep; 251(18):5483-9. PubMed ID: 184082 [TBL] [Abstract][Full Text] [Related]
8. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters. Chase JF; Tubbs PK Biochem J; 1972 Aug; 129(1):55-65. PubMed ID: 4646779 [TBL] [Abstract][Full Text] [Related]
9. The effect of palmitoyl-coenzyme A on rat heart and liver mitochondria. Oxygen consumption and palmitoylcarnitine formation. Wood JM; Wallick ET; Schwartz A; Chang CH Biochim Biophys Acta; 1977 Feb; 486(2):331-40. PubMed ID: 836862 [TBL] [Abstract][Full Text] [Related]
10. Interrelationship in the regulation of pyruvate dehydrogenase and adenine-nucleotide translocase by palmitoyl-CoA in isolated mitochondria. Shrago E; Ball M; Sul HS; Baquer NZ; McLean P Eur J Biochem; 1977 May; 75(1):83-9. PubMed ID: 862623 [TBL] [Abstract][Full Text] [Related]
11. The proton-translocating nicotinamide-adenine dinucleotide (phosphate) transhydrogenase of rat liver mitochondria. Moyle J; Mitchell P Biochem J; 1973 Mar; 132(3):571-85. PubMed ID: 4146799 [TBL] [Abstract][Full Text] [Related]
12. Contribution to control of mitochondrial oxidative phosphorylation by supplement of reducing equivalents. Kunz W; Gellerich FN; Schild L Biochem Med Metab Biol; 1994 Jun; 52(1):65-75. PubMed ID: 7917469 [TBL] [Abstract][Full Text] [Related]
13. Regulation of fatty acid oxidation in rat brain mitochondria: inhibition of high rates of palmitate oxidation by ADP. Kawamura N Arch Biochem Biophys; 1988 Aug; 264(2):546-52. PubMed ID: 2969699 [TBL] [Abstract][Full Text] [Related]
14. Diabetes and the control of pyruvate dehydrogenase in rat heart mitochondria by concentration ratios of adenosine triphosphate/adenosine diphosphate, of reduced/oxidized nicotinamide-adenine dinucleotide and of acetyl-coenzyme A/coenzyme A. Kerbey AL; Radcliffe PM; Randle PJ Biochem J; 1977 Jun; 164(3):509-19. PubMed ID: 196589 [TBL] [Abstract][Full Text] [Related]
15. The NAD-linked isocitrate dehydrogenase activity in rat-liver mitochondria. Hoek JB; Rydström J; Ernster L Biochim Biophys Acta; 1973 Jun; 305(3):669-74. PubMed ID: 4147423 [No Abstract] [Full Text] [Related]
16. [The protective effect of cyclosporine A, carnitine, and Mg(2+) with ADP during calcium(2+)-dependent permeabilization of mitochondria by fatty acids and activation of NADH oxidation by an external pathway]. Starkov AA; Markova OV; Mokhova EN; Arrigoni-Martelli E; Battelli D; Bobyleva VA Biokhimiia; 1993 Aug; 58(8):1266-75. PubMed ID: 8399776 [TBL] [Abstract][Full Text] [Related]
17. Regulation of pyruvate dehydrogenase by fatty acid in isolated rat liver mitochondria. Batenburg JJ; Olson MS J Biol Chem; 1976 Mar; 251(5):1364-70. PubMed ID: 176149 [TBL] [Abstract][Full Text] [Related]
18. Studies on inactivation of pyruvate dehydrogenase by palmitoylcarnitine oxidation in isolated rat heart mitochondria. Hansford RG J Biol Chem; 1977 Mar; 252(5):1552-60. PubMed ID: 838728 [TBL] [Abstract][Full Text] [Related]
19. Fatty acid-induced Ca(2+)-dependent uncoupling and activation of external pathway of NADH oxidation are coupled to cyclosporin A-sensitive mitochondrial permeability transition. Starkov AA; Markova OV; Mokhova EN; Arrigoni-Martelli E; Bobyleva VA Biochem Mol Biol Int; 1994 Apr; 32(6):1147-55. PubMed ID: 8061632 [TBL] [Abstract][Full Text] [Related]
20. Effect of palmitoyl-CoA and beta-oxidation of fatty acids on the kinetics of mitochondrial citrate transporter. Cheema-Dhadli S; Halperin ML Can J Biochem; 1976 Feb; 54(2):171-7. PubMed ID: 1260499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]