These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18395334)

  • 21. Removal of fluoride from aqueous solution using protonated chitosan beads.
    Viswanathan N; Sundaram CS; Meenakshi S
    J Hazard Mater; 2009 Jan; 161(1):423-30. PubMed ID: 18479817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and lead ion removal property of hydroxyapatite/polyacrylamide composite hydrogels.
    Jang SH; Jeong YG; Min BG; Lyoo WS; Lee SC
    J Hazard Mater; 2008 Nov; 159(2-3):294-9. PubMed ID: 18430514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of Reactive Red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles.
    Belessi V; Romanos G; Boukos N; Lambropoulou D; Trapalis C
    J Hazard Mater; 2009 Oct; 170(2-3):836-44. PubMed ID: 19540670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes.
    Hu J; Chen C; Zhu X; Wang X
    J Hazard Mater; 2009 Mar; 162(2-3):1542-50. PubMed ID: 18650001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Porogen effect on characteristics of banana pith carbon and the sorption of dichlorophenols.
    Sathishkumar M; Vijayaraghavan K; Binupriya AR; Stephan AM; Choi JG; Yun SE
    J Colloid Interface Sci; 2008 Apr; 320(1):22-9. PubMed ID: 18221943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acid-activated spent bleaching earth as a sorbent for chromium (VI) in aqueous solution.
    Low KS; Lee CK; Lee TS
    Environ Technol; 2003 Feb; 24(2):197-204. PubMed ID: 12675017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal.
    Gupta VK; Agarwal S; Saleh TA
    J Hazard Mater; 2011 Jan; 185(1):17-23. PubMed ID: 20888691
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biosorption of arsenic from aqueous solution using agricultural residue 'rice polish'.
    Ranjan D; Talat M; Hasan SH
    J Hazard Mater; 2009 Jul; 166(2-3):1050-9. PubMed ID: 19131161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isotherm, kinetic and thermodynamic studies of lead and copper uptake by H2SO4 modified chitosan.
    Kamari A; Ngah WS
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):257-66. PubMed ID: 19556114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosorption of nickel from aqueous solutions by Acacia leucocephala bark: Kinetics and equilibrium studies.
    Subbaiah MV; Vijaya Y; Kumar NS; Reddy AS; Krishnaiah A
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):260-5. PubMed ID: 19716275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of pH on lead removal from water using tree fern as the sorbent.
    Ho YS
    Bioresour Technol; 2005 Jul; 96(11):1292-6. PubMed ID: 15734317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics, equilibrium and mechanism of Cd2+ removal from aqueous solution by mungbean husk.
    Saeed A; Iqbal M; Höll WH
    J Hazard Mater; 2009 Sep; 168(2-3):1467-75. PubMed ID: 19386413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of aqueous lead removal by phosphatic clay: equilibrium and kinetic studies.
    Singh SP; Ma LQ; Hendry MJ
    J Hazard Mater; 2006 Aug; 136(3):654-62. PubMed ID: 16487656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust.
    Rafatullah M; Sulaiman O; Hashim R; Ahmad A
    J Hazard Mater; 2009 Oct; 170(2-3):969-77. PubMed ID: 19520510
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of total phenols from olive-mill wastewater using an agricultural by-product, olive pomace.
    Stasinakis AS; Elia I; Petalas AV; Halvadakis CP
    J Hazard Mater; 2008 Dec; 160(2-3):408-13. PubMed ID: 18417287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sorption of organophosphorous pesticides onto chickpea husk from aqueous solutions.
    Akhtar M; Iqbal S; Bhanger MI; Zia-Ul-Haq M; Moazzam M
    Colloids Surf B Biointerfaces; 2009 Feb; 69(1):63-70. PubMed ID: 19091530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The color removal of dye wastewater by magnesium chloride/red mud (MRM) from aqueous solution.
    Wang Q; Luan Z; Wei N; Li J; Liu C
    J Hazard Mater; 2009 Oct; 170(2-3):690-8. PubMed ID: 19505755
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions.
    Vaghetti JC; Lima EC; Royer B; da Cunha BM; Cardoso NF; Brasil JL; Dias SL
    J Hazard Mater; 2009 Feb; 162(1):270-80. PubMed ID: 18565650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of Pb(II) from aqueous solution using modified and unmodified kaolinite clay.
    Jiang MQ; Wang QP; Jin XY; Chen ZL
    J Hazard Mater; 2009 Oct; 170(1):332-9. PubMed ID: 19464114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.