These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 18395478)

  • 1. Implications of a poroelastic cytoplasm for the dynamics of animal cell shape.
    Mitchison TJ; Charras GT; Mahadevan L
    Semin Cell Dev Biol; 2008 Jun; 19(3):215-23. PubMed ID: 18395478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cytoplasm of living cells behaves as a poroelastic material.
    Moeendarbary E; Valon L; Fritzsche M; Harris AR; Moulding DA; Thrasher AJ; Stride E; Mahadevan L; Charras GT
    Nat Mater; 2013 Mar; 12(3):253-61. PubMed ID: 23291707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-equilibration of hydrostatic pressure in blebbing cells.
    Charras GT; Yarrow JC; Horton MA; Mahadevan L; Mitchison TJ
    Nature; 2005 May; 435(7040):365-9. PubMed ID: 15902261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Going with the Flow: Water Flux and Cell Shape during Cytokinesis.
    Li Y; He L; Gonzalez NAP; Graham J; Wolgemuth C; Wirtz D; Sun SX
    Biophys J; 2017 Dec; 113(11):2487-2495. PubMed ID: 29212002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell.
    Nikmaneshi MR; Firoozabadi B; Saidi MS
    J Biomech; 2018 Jan; 67():37-45. PubMed ID: 29217089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular Pressure Dynamics in Blebbing Cells.
    Strychalski W; Guy RD
    Biophys J; 2016 Mar; 110(5):1168-79. PubMed ID: 26958893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcellular tension fields and mechanical resistance of the lamella front related to the direction of locomotion.
    Bereiter-Hahn J; Lüers H
    Cell Biochem Biophys; 1998; 29(3):243-62. PubMed ID: 9868581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy study revealed velocity-dependence and nonlinearity of nanoscale poroelasticity of eukaryotic cells.
    Mollaeian K; Liu Y; Bi S; Ren J
    J Mech Behav Biomed Mater; 2018 Feb; 78():65-73. PubMed ID: 29136577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular mechanochemical waves in an active poroelastic model.
    Radszuweit M; Alonso S; Engel H; Bär M
    Phys Rev Lett; 2013 Mar; 110(13):138102. PubMed ID: 23581377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actomyosin contractility spatiotemporally regulates actin network dynamics in migrating cells.
    Okeyo KO; Adachi T; Sunaga J; Hojo M
    J Biomech; 2009 Nov; 42(15):2540-8. PubMed ID: 19665125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational model of bleb formation.
    Strychalski W; Guy RD
    Math Med Biol; 2013 Jun; 30(2):115-30. PubMed ID: 22294562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular Pressure: A Driver of Cell Morphology and Movement.
    Chengappa P; Sao K; Jones TM; Petrie RJ
    Int Rev Cell Mol Biol; 2018; 337():185-211. PubMed ID: 29551161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protrusive activity, cytoplasmic compartmentalization, and restriction rings in locomoting blebbing Walker carcinosarcoma cells are related to detachment of cortical actin from the plasma membrane.
    Keller H; Eggli P
    Cell Motil Cytoskeleton; 1998; 41(2):181-93. PubMed ID: 9786092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-movement of astral microtubules, organelles and F-actin by dynein and actomyosin forces in frog egg cytoplasm.
    Pelletier JF; Field CM; Fürthauer S; Sonnett M; Mitchison TJ
    Elife; 2020 Dec; 9():. PubMed ID: 33284105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tension and Elasticity Contribute to Fibroblast Cell Shape in Three Dimensions.
    Brand CA; Linke M; Weißenbruch K; Richter B; Bastmeyer M; Schwarz US
    Biophys J; 2017 Aug; 113(4):770-774. PubMed ID: 28755755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-sized spherical confinement induces the spontaneous formation of contractile actomyosin rings in vitro.
    Miyazaki M; Chiba M; Eguchi H; Ohki T; Ishiwata S
    Nat Cell Biol; 2015 Apr; 17(4):480-9. PubMed ID: 25799060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergent mechanics of actomyosin drive punctuated contractions and shape network morphology in the cell cortex.
    Miller CJ; Harris D; Weaver R; Ermentrout GB; Davidson LA
    PLoS Comput Biol; 2018 Sep; 14(9):e1006344. PubMed ID: 30222728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic modes of the cortical actomyosin gel during cell locomotion and division.
    Paluch E; Sykes C; Prost J; Bornens M
    Trends Cell Biol; 2006 Jan; 16(1):5-10. PubMed ID: 16325405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical regulation of contractility: spatial control and dynamics.
    Levayer R; Lecuit T
    Trends Cell Biol; 2012 Feb; 22(2):61-81. PubMed ID: 22119497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.