These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 18395516)
1. Single amino acid of an octopamine receptor as a molecular switch for distinct G protein couplings. Huang J; Hamasaki T; Ozoe F; Ozoe Y Biochem Biophys Res Commun; 2008 Jul; 371(4):610-4. PubMed ID: 18395516 [TBL] [Abstract][Full Text] [Related]
2. Identification of critical structural determinants responsible for octopamine binding to the alpha-adrenergic-like Bombyx mori octopamine receptor. Huang J; Hamasaki T; Ozoe F; Ohta H; Enomoto K; Kataoka H; Sawa Y; Hirota A; Ozoe Y Biochemistry; 2007 May; 46(20):5896-903. PubMed ID: 17469804 [TBL] [Abstract][Full Text] [Related]
3. Molecular cloning and heterologous expression of an alpha-adrenergic-like octopamine receptor from the silkworm Bombyx mori. Ohtani A; Arai Y; Ozoe F; Ohta H; Narusuye K; Huang J; Enomoto K; Kataoka H; Hirota A; Ozoe Y Insect Mol Biol; 2006 Dec; 15(6):763-72. PubMed ID: 17201769 [TBL] [Abstract][Full Text] [Related]
4. Functional and pharmacological characterization of a beta-adrenergic-like octopamine receptor from the silkworm Bombyx mori. Chen X; Ohta H; Ozoe F; Miyazawa K; Huang J; Ozoe Y Insect Biochem Mol Biol; 2010 Jun; 40(6):476-86. PubMed ID: 20417278 [TBL] [Abstract][Full Text] [Related]
5. Tyramine receptor (SER-2) isoforms are involved in the regulation of pharyngeal pumping and foraging behavior in Caenorhabditis elegans. Rex E; Molitor SC; Hapiak V; Xiao H; Henderson M; Komuniecki R J Neurochem; 2004 Dec; 91(5):1104-15. PubMed ID: 15569254 [TBL] [Abstract][Full Text] [Related]
6. Molecular cloning and pharmacological characterization of a Bombyx mori tyramine receptor selectively coupled to intracellular calcium mobilization. Huang J; Ohta H; Inoue N; Takao H; Kita T; Ozoe F; Ozoe Y Insect Biochem Mol Biol; 2009 Nov; 39(11):842-9. PubMed ID: 19833207 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a β-adrenergic-like octopamine receptor from the rice stem borer (Chilo suppressalis). Wu SF; Yao Y; Huang J; Ye GY J Exp Biol; 2012 Aug; 215(Pt 15):2646-52. PubMed ID: 22786641 [TBL] [Abstract][Full Text] [Related]
8. Cloning, expression and functional analysis of an octopamine receptor from Periplaneta americana. Bischof LJ; Enan EE Insect Biochem Mol Biol; 2004 Jun; 34(6):511-21. PubMed ID: 15147753 [TBL] [Abstract][Full Text] [Related]
9. A family of octopamine [corrected] receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. Balfanz S; Strünker T; Frings S; Baumann A J Neurochem; 2005 Apr; 93(2):440-51. PubMed ID: 15816867 [TBL] [Abstract][Full Text] [Related]
10. Octopamine receptors from the barnacle balanus improvisus are activated by the alpha2-adrenoceptor agonist medetomidine. Lind U; Alm Rosenblad M; Hasselberg Frank L; Falkbring S; Brive L; Laurila JM; Pohjanoksa K; Vuorenpää A; Kukkonen JP; Gunnarsson L; Scheinin M; Mårtensson Lindblad LG; Blomberg A Mol Pharmacol; 2010 Aug; 78(2):237-48. PubMed ID: 20488921 [TBL] [Abstract][Full Text] [Related]
11. Pharmacological characterization of a Bombyx mori alpha-adrenergic-like octopamine receptor stably expressed in a mammalian cell line. Huang J; Hamasaki T; Ozoe Y Arch Insect Biochem Physiol; 2010 Feb; 73(2):74-86. PubMed ID: 19918790 [TBL] [Abstract][Full Text] [Related]
12. Amino acid residues involved in interaction with tyramine in the Bombyx mori tyramine receptor. Ohta H; Utsumi T; Ozoe Y Insect Mol Biol; 2004 Oct; 13(5):531-8. PubMed ID: 15373809 [TBL] [Abstract][Full Text] [Related]
13. Molecular, pharmacological, and signaling properties of octopamine receptors from honeybee (Apis mellifera) brain. Balfanz S; Jordan N; Langenstück T; Breuer J; Bergmeier V; Baumann A J Neurochem; 2014 Apr; 129(2):284-96. PubMed ID: 24266860 [TBL] [Abstract][Full Text] [Related]
14. The characterization of a concentration-sensitive α-adrenergic-like octopamine receptor found on insect immune cells and its possible role in mediating stress hormone effects on immune function. Huang J; Wu SF; Li XH; Adamo SA; Ye GY Brain Behav Immun; 2012 Aug; 26(6):942-50. PubMed ID: 22561607 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization and localization of the first tyramine receptor of the American cockroach (Periplaneta americana). Rotte C; Krach C; Balfanz S; Baumann A; Walz B; Blenau W Neuroscience; 2009 Sep; 162(4):1120-33. PubMed ID: 19482069 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a novel octopamine receptor expressed in the surf clam Spisula solidissima. Blais V; Bounif N; Dubé F Gen Comp Endocrinol; 2010 Jun; 167(2):215-27. PubMed ID: 20302871 [TBL] [Abstract][Full Text] [Related]
17. Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera. Blenau W; Baumann A Arch Insect Biochem Physiol; 2001 Sep; 48(1):13-38. PubMed ID: 11519073 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a tyramine receptor type 2 from hemocytes of rice stem borer, Chilo suppressalis. Wu SF; Xu G; Ye GY J Insect Physiol; 2015 Apr; 75():39-46. PubMed ID: 25772095 [TBL] [Abstract][Full Text] [Related]
19. G-Protein coupled receptors: models, mutagenesis, and drug design. Bikker JA; Trumpp-Kallmeyer S; Humblet C J Med Chem; 1998 Jul; 41(16):2911-27. PubMed ID: 9685229 [No Abstract] [Full Text] [Related]
20. Nonredundant function of two highly homologous octopamine receptors in food-deprivation-mediated signaling in Caenorhabditis elegans. Yoshida M; Oami E; Wang M; Ishiura S; Suo S J Neurosci Res; 2014 May; 92(5):671-8. PubMed ID: 24446241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]