These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 18395516)
21. Substituent-dependent, positive and negative modulation of Bombyx mori adenylate cyclase by synthetic octopamine/tyramine analogues. Aoyama M; Nakane T; Ono T; Khan MA; Ohta H; Ozoe Y Arch Insect Biochem Physiol; 2001 May; 47(1):1-7. PubMed ID: 11317330 [TBL] [Abstract][Full Text] [Related]
22. Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Enan EE Arch Insect Biochem Physiol; 2005 Jul; 59(3):161-71. PubMed ID: 15986384 [TBL] [Abstract][Full Text] [Related]
23. Structural evidence for a sequential release mechanism for activation of heterotrimeric G proteins. Kapoor N; Menon ST; Chauhan R; Sachdev P; Sakmar TP J Mol Biol; 2009 Nov; 393(4):882-97. PubMed ID: 19703466 [TBL] [Abstract][Full Text] [Related]
24. Structure-dependent receptor subtype selectivity and G protein subtype preference of heterocyclic agonists in heterologously expressed silkworm octopamine receptors. Hayashi T; Katoh L; Ozoe F; Ozoe Y Pestic Biochem Physiol; 2021 Aug; 177():104895. PubMed ID: 34301357 [TBL] [Abstract][Full Text] [Related]
25. Identification of octopaminergic agonists with selectivity for octopamine receptor subtypes. Nathanson JA J Pharmacol Exp Ther; 1993 May; 265(2):509-15. PubMed ID: 8496802 [TBL] [Abstract][Full Text] [Related]
26. Positive and negative modulation of Bombyx mori adenylate cyclase by 5-phenyloxazoles: identification of octopamine and tyramine receptor agonists. Khan MA; Nakane T; Ohta H; Ozoe Y Arch Insect Biochem Physiol; 2003 Jan; 52(1):7-16. PubMed ID: 12489130 [TBL] [Abstract][Full Text] [Related]
27. B96Bom encodes a Bombyx mori tyramine receptor negatively coupled to adenylate cyclase. Ohta H; Utsumi T; Ozoe Y Insect Mol Biol; 2003 Jun; 12(3):217-23. PubMed ID: 12752654 [TBL] [Abstract][Full Text] [Related]
28. Molecular cloning and pharmacological characterisation of a tyramine receptor from the rice stem borer, Chilo suppressalis (Walker). Wu SF; Huang J; Ye GY Pest Manag Sci; 2013 Jan; 69(1):126-34. PubMed ID: 23129510 [TBL] [Abstract][Full Text] [Related]
29. Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Enan EE Insect Biochem Mol Biol; 2005 Apr; 35(4):309-21. PubMed ID: 15763467 [TBL] [Abstract][Full Text] [Related]
30. A new family of insect tyramine receptors. Cazzamali G; Klaerke DA; Grimmelikhuijzen CJ Biochem Biophys Res Commun; 2005 Dec; 338(2):1189-96. PubMed ID: 16274665 [TBL] [Abstract][Full Text] [Related]
31. Two splicing variants of a novel family of octopamine receptors with different signaling properties. Wu SF; Xu G; Qi YX; Xia RY; Huang J; Ye GY J Neurochem; 2014 Apr; 129(1):37-47. PubMed ID: 24279508 [TBL] [Abstract][Full Text] [Related]
32. Stimulation of cyclic AMP formation and nerve electrical activity by octopamine in the terminal abdominal ganglion of the female gypsy moth Lymantria dispar. Olianas MC; Solari P; Garau L; Liscia A; Crnjar R; Onali P Brain Res; 2006 Feb; 1071(1):63-74. PubMed ID: 16412393 [TBL] [Abstract][Full Text] [Related]
33. Pharmacological characterisation and functional roles for egg-laying of a β-adrenergic-like octopamine receptor in the brown planthopper Nilaparvata lugens. Wu SF; Jv XM; Li J; Xu GJ; Cai XY; Gao CF Insect Biochem Mol Biol; 2017 Aug; 87():55-64. PubMed ID: 28629966 [TBL] [Abstract][Full Text] [Related]
34. Agonist-specific coupling of G-protein-coupled receptors to second-messenger systems. Evans PD; Robb S; Cheek TR; Reale V; Hannan FL; Swales LS; Hall LM; Midgley JM Prog Brain Res; 1995; 106():259-68. PubMed ID: 8584662 [No Abstract] [Full Text] [Related]
35. Molecular and pharmacological characterization of a β-adrenergic-like octopamine receptor from the green rice leafhopper Nephotettix cincticeps. Xu G; Chang XF; Gu GX; Jia WX; Guo L; Huang J; Ye GY Insect Biochem Mol Biol; 2020 May; 120():103337. PubMed ID: 32109588 [TBL] [Abstract][Full Text] [Related]
36. Effect of octopamine on the activity of juvenile-hormone esterase in the silkworm Bombyx mori and the red flour beetle Tribolium freemani. Hirashima A; Suetsugu E; Hirokado S; Kuwano E; Taniguchi E; Eto M Gen Comp Endocrinol; 1999 Dec; 116(3):373-81. PubMed ID: 10603275 [TBL] [Abstract][Full Text] [Related]
37. Tyramine and octopamine: antagonistic modulators of behavior and metabolism. Roeder T; Seifert M; Kähler C; Gewecke M Arch Insect Biochem Physiol; 2003 Sep; 54(1):1-13. PubMed ID: 12942511 [TBL] [Abstract][Full Text] [Related]
38. Molecular cloning and pharmacological characterization of a molluscan octopamine receptor. Gerhardt CC; Bakker RA; Piek GJ; Planta RJ; Vreugdenhil E; Leysen JE; Van Heerikhuizen H Mol Pharmacol; 1997 Feb; 51(2):293-300. PubMed ID: 9203635 [TBL] [Abstract][Full Text] [Related]
39. Amitraz and its metabolite differentially activate α- and β-adrenergic-like octopamine receptors. Kita T; Hayashi T; Ohtani T; Takao H; Takasu H; Liu G; Ohta H; Ozoe F; Ozoe Y Pest Manag Sci; 2017 May; 73(5):984-990. PubMed ID: 27484898 [TBL] [Abstract][Full Text] [Related]
40. Molecular and Pharmacological Characterization of β-Adrenergic-like Octopamine Receptors in the Endoparasitoid Xu G; Zhang YY; Gu GX; Yang GQ; Ye GY Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36498840 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]