These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 18395740)
61. Feeding through artificial membranes reduces fecundity for females of the blood-feeding insect, Rhodnius prolixus. Chiang RG; Chiang JA Arch Insect Biochem Physiol; 2010 Jun; 74(2):103-13. PubMed ID: 20513058 [TBL] [Abstract][Full Text] [Related]
62. Silencing of Mitochondrial Trifunctional Protein A Subunit (HADHA) Increases Lipid Stores, and Reduces Oviposition and Flight Capacity in the Vector Insect Arêdes DS; De Paula IF; Santos-Araujo S; Gondim KC Front Insect Sci; 2022; 2():885172. PubMed ID: 38468769 [No Abstract] [Full Text] [Related]
63. Characterization of termite lipophorin and its involvement in hydrocarbon transport. Fan Y; Schal C; Vargo EL; Bagnères AG J Insect Physiol; 2004 Jul; 50(7):609-20. PubMed ID: 15234621 [TBL] [Abstract][Full Text] [Related]
64. Trypanosoma cruzi: effects of infection on cathepsin D activity in the midgut of Rhodnius prolixus. Borges EC; Machado EM; Garcia ES; Azambuja P Exp Parasitol; 2006 Feb; 112(2):130-3. PubMed ID: 16288741 [TBL] [Abstract][Full Text] [Related]
65. Haemolymph and fat body metallo-protease associated with Enterobacter cloacae infection in the bloodsucking insect, Rhodnius prolixus. Feder D; Salles JM; Garcia ES; Azambuja P Mem Inst Oswaldo Cruz; 1998; 93(6):823-6. PubMed ID: 9921310 [TBL] [Abstract][Full Text] [Related]
66. Characterization of neuropeptide F-like immunoreactivity in the blood-feeding hemipteran, Rhodnius prolixus. Gonzalez R; Orchard I Peptides; 2008 Apr; 29(4):545-58. PubMed ID: 18201798 [TBL] [Abstract][Full Text] [Related]
67. Incorporation of [U-14C] palmitate into lipids by the stable fly, Stomoxys calcitrans (L.). Venkatesh K; Morrison PE Arch Int Physiol Biochim; 1982 Jul; 90(2):95-102. PubMed ID: 6182855 [TBL] [Abstract][Full Text] [Related]
68. The Fat Body of the Hematophagous Insect, Panstrongylus megistus (Hemiptera: Reduviidae): Histological Features and Participation of the β-Chain of ATP Synthase in the Lipophorin-Mediated Lipid Transfer. Fruttero LL; Leyria J; Moyetta NR; Ramos FO; Settembrini BP; Canavoso LE J Insect Sci; 2019 Jul; 19(4):. PubMed ID: 31346627 [TBL] [Abstract][Full Text] [Related]
69. Tyraminergic control of vitellogenin production and release in the blood-feeding insect, Rhodnius prolixus. Finetti L; Leyria J; Orchard I; Lange AB Insect Biochem Mol Biol; 2023 May; 156():103948. PubMed ID: 37075904 [TBL] [Abstract][Full Text] [Related]
70. Urate synthesis in the blood-sucking insect rhodnius prolixus. Stimulation by hemin is mediated by protein kinase C. Graça-Souza AV; Silva-Neto MA; Oliveira PL J Biol Chem; 1999 Apr; 274(14):9673-6. PubMed ID: 10092654 [TBL] [Abstract][Full Text] [Related]
71. Silencing of maternal heme-binding protein causes embryonic mitochondrial dysfunction and impairs embryogenesis in the blood sucking insect Rhodnius prolixus. Walter-Nuno AB; Oliveira MP; Oliveira MF; Gonçalves RL; Ramos IB; Koerich LB; Oliveira PL; Paiva-Silva GO J Biol Chem; 2013 Oct; 288(41):29323-32. PubMed ID: 23986441 [TBL] [Abstract][Full Text] [Related]
72. Trypanosoma rangeli: effects of physalin B on the immune reactions of the infected larvae of Rhodnius prolixus. Garcia ES; Castro DP; Ribeiro IM; Tomassini TC; Azambuja P Exp Parasitol; 2006 Jan; 112(1):37-43. PubMed ID: 16271717 [TBL] [Abstract][Full Text] [Related]
74. Calcium-regulated fusion of yolk granules is important for yolk degradation during early embryogenesis of Rhodnius prolixus Stahl. Ramos IB; Miranda K; de Souza W; Oliveira DM; Lima AP; Sorgine MH; Machado EA J Exp Biol; 2007 Jan; 210(Pt 1):138-48. PubMed ID: 17170157 [TBL] [Abstract][Full Text] [Related]
75. Effects of retinoids and juvenoids on moult and on phenoloxidase activity in the blood-sucking insect Rhodnius prolixus. Nakamura A; Stiebler R; Fantappié MR; Fialho E; Masuda H; Oliveira MF Acta Trop; 2007 Sep; 103(3):222-30. PubMed ID: 17686447 [TBL] [Abstract][Full Text] [Related]
77. Testis ecdysiotropic peptides in Rhodnius prolixus: biological activity and distribution in the nervous system and testis. Vafopoulou X; Steel CG J Insect Physiol; 2005 Nov; 51(11):1227-39. PubMed ID: 16139295 [TBL] [Abstract][Full Text] [Related]
78. An Insulin-Like Growth Factor in Defferrari MS; Orchard I; Lange AB Front Neurosci; 2016; 10():566. PubMed ID: 28018164 [TBL] [Abstract][Full Text] [Related]
79. Beneficial effects of designed dietary fatty acid compositions on lipids in triacylglycerol-rich lipoproteins among Chinese patients with type 2 diabetes mellitus. Dai J; Su YX; Bartell S; Le NA; Ling WH; Liang YQ; Gao L; Wu HY; Veledar E; Vaccarino V Metabolism; 2009 Apr; 58(4):510-8. PubMed ID: 19303972 [TBL] [Abstract][Full Text] [Related]
80. Vitellogenesis in the hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae), a vector of Chagas' disease. Aguirre SA; Frede S; Rubiolo ER; Canavoso LE J Insect Physiol; 2008 Feb; 54(2):393-402. PubMed ID: 18068184 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]