BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 18395748)

  • 1. Vascular prostheses: performance related to cell-shear responses.
    Andrews KD; Feugier P; Black RA; Hunt JA
    J Surg Res; 2008 Sep; 149(1):39-46. PubMed ID: 18395748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attachment, morphology and adherence of human endothelial cells to vascular prosthesis materials under the action of shear stress.
    Feugier P; Black RA; Hunt JA; How TV
    Biomaterials; 2005 May; 26(13):1457-66. PubMed ID: 15522747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mylar and Teflon-AF as cell culture substrates for studying endothelial cell adhesion.
    Anamelechi CC; Truskey GA; Reichert WM
    Biomaterials; 2005 Dec; 26(34):6887-96. PubMed ID: 15990164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol-modified polyurethane valve cusps demonstrate blood outgrowth endothelial cell adhesion post-seeding in vitro and in vivo.
    Stachelek SJ; Alferiev I; Connolly JM; Sacks M; Hebbel RP; Bianco R; Levy RJ
    Ann Thorac Surg; 2006 Jan; 81(1):47-55. PubMed ID: 16368333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The response of rapidly formed adult human endothelial-cell monolayers to shear stress of flow: a comparison of fibronectin-coated Teflon and gelatin-impregnated Dacron grafts.
    Vohra R; Thomson GJ; Carr HM; Sharma H; Walker MG
    Surgery; 1992 Feb; 111(2):210-20. PubMed ID: 1531272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and fibrinolytic parameters of human umbilical vein endothelial cells seeded onto cardiovascular grafts.
    Zhang JC; Wojta J; Binder BR
    J Thorac Cardiovasc Surg; 1995 Jun; 109(6):1059-65. PubMed ID: 7776669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving endothelial cell adhesion to vascular graft surfaces: clinical need and strategies.
    Bhat VD; Klitzman B; Koger K; Truskey GA; Reichert WM
    J Biomater Sci Polym Ed; 1998; 9(11):1117-35. PubMed ID: 9860176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the endothelialization of small intestinal submucosa, dacron, and expanded polytetrafluoroethylene suspended in the thoracoabdominal aorta in sheep.
    Yavuz K; Geyik S; Pavcnik D; Uchida BT; Corless CL; Hartley DE; Goktay A; Correa LO; Timmermans H; Hodde JP; Kaufman JA; Keller FS; Rösch J
    J Vasc Interv Radiol; 2006 May; 17(5):873-82. PubMed ID: 16687754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human endothelial cell interactions with surface-coupled adhesion peptides on a nonadhesive glass substrate and two polymeric biomaterials.
    Massia SP; Hubbell JA
    J Biomed Mater Res; 1991 Feb; 25(2):223-42. PubMed ID: 1829082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seeding of human vascular cells onto small diameter polyurethane vascular grafts.
    Gulbins H; Pritisanac A; Dauner M; Petzold R; Goldemund A; Doser M; Meiser B; Reichart B
    Thorac Cardiovasc Surg; 2006 Mar; 54(2):102-7. PubMed ID: 16541350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyethyleneterephthalate provides superior retention of endothelial cells during shear stress compared to polytetrafluoroethylene and pericardium.
    Wong CS; Sgarioto M; Owida AA; Yang W; Rosenfeldt FL; Morsi YS
    Heart Lung Circ; 2006 Dec; 15(6):371-7. PubMed ID: 17035084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A low-flow adaptation phase improves shear-stress resistance of artificially seeded endothelial cells.
    Gulbins H; Pritisanac A; Petzold R; Goldemund A; Doser M; Dauner M; Meiser B; Reichart B; Daebritz S
    Thorac Cardiovasc Surg; 2005 Apr; 53(2):96-102. PubMed ID: 15786008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyurethane/polyurethane nanoparticle-modified expanded poly(tetrafluoroethylene) vascular patches promote endothelialization.
    Zhang J; Wang Y; Liu C; Feng F; Wang D; Mo H; Si L; Wei G; Shen J
    J Biomed Mater Res A; 2018 Aug; 106(8):2131-2140. PubMed ID: 29633582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro characterization of chitosan-gelatin scaffolds for tissue engineering.
    Huang Y; Onyeri S; Siewe M; Moshfeghian A; Madihally SV
    Biomaterials; 2005 Dec; 26(36):7616-27. PubMed ID: 16005510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Vascular prostheses: 50 years of advancement from synthetic towards tissue engineering and cell therapy].
    Chlupác J; Filová E; Bacáková L
    Rozhl Chir; 2010 Jan; 89(1):85-94. PubMed ID: 21351411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A self-renewing, tissue-engineered vascular graft for arterial reconstruction.
    Torikai K; Ichikawa H; Hirakawa K; Matsumiya G; Kuratani T; Iwai S; Saito A; Kawaguchi N; Matsuura N; Sawa Y
    J Thorac Cardiovasc Surg; 2008 Jul; 136(1):37-45, 45.e1. PubMed ID: 18603051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micropatterned polymer surfaces improve retention of endothelial cells exposed to flow-induced shear stress.
    Daxini SC; Nichol JW; Sieminski AL; Smith G; Gooch KJ; Shastri VP
    Biorheology; 2006; 43(1):45-55. PubMed ID: 16627926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelial cell seeding of polytetrafluoroethylene vascular prostheses coated with a fibroblastic matrix.
    Bellón JM; Buján J; Honduvilla NG; Hernando A; Navlet J
    Ann Vasc Surg; 1993 Nov; 7(6):549-55. PubMed ID: 8123457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gravity spun polycaprolactone fibers for applications in vascular tissue engineering: proliferation and function of human vascular endothelial cells.
    Williamson MR; Woollard KJ; Griffiths HR; Coombes AG
    Tissue Eng; 2006 Jan; 12(1):45-51. PubMed ID: 16499441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The preparation and performance of a new polyurethane vascular prosthesis.
    He W; Hu Z; Xu A; Liu R; Yin H; Wang J; Wang S
    Cell Biochem Biophys; 2013 Jul; 66(3):855-66. PubMed ID: 23456453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.