BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18395923)

  • 1. Directed immobilization of DNA-binding proteins on a cognate DNA-modified chip surface.
    Jeong EJ; Jeong YS; Park K; Yi SY; Ahn J; Chung SJ; Kim M; Chung BH
    J Biotechnol; 2008 May; 135(1):16-21. PubMed ID: 18395923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface plasmon resonance imaging analysis of protein-protein interactions using on-chip-expressed capture protein.
    Kim M; Park K; Jeong EJ; Shin YB; Chung BH
    Anal Biochem; 2006 Apr; 351(2):298-304. PubMed ID: 16510110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy.
    Shumaker-Parry JS; Aebersold R; Campbell CT
    Anal Chem; 2004 Apr; 76(7):2071-82. PubMed ID: 15053673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a protein microarray using sequence-specific DNA binding domain on DNA chip surface.
    Choi YS; Pack SP; Yoo YJ
    Biochem Biophys Res Commun; 2005 Apr; 329(4):1315-9. PubMed ID: 15766570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of two- and three-dimensional streptavidin binding platforms for surface plasmon resonance spectroscopy studies of DNA hybridization and protein-DNA binding.
    Yang N; Su X; Tjong V; Knoll W
    Biosens Bioelectron; 2007 May; 22(11):2700-6. PubMed ID: 17223028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microspotting streptavidin and double-stranded DNA arrays on gold for high-throughput studies of protein-DNA interactions by surface plasmon resonance microscopy.
    Shumaker-Parry JS; Zareie MH; Aebersold R; Campbell CT
    Anal Chem; 2004 Feb; 76(4):918-29. PubMed ID: 14961721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed self-assembly of gold binding polypeptide-protein A fusion proteins for development of gold nanoparticle-based SPR immunosensors.
    Ko S; Park TJ; Kim HS; Kim JH; Cho YJ
    Biosens Bioelectron; 2009 Apr; 24(8):2592-7. PubMed ID: 19243930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of protein chip to detect binding of Mitf protein (microphthalmia transcription factor) and E-box DNA.
    Yang SH; Han JS; Baek SH; Kwak EY; Kim HJ; Shin JH; Chung BH; Kim EK
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):273-82. PubMed ID: 18427742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPR imaging-based monitoring of caspase-3 activation.
    Park K; Ahn J; Yi SY; Kim M; Chung BH
    Biochem Biophys Res Commun; 2008 Apr; 368(3):684-9. PubMed ID: 18261973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon resonance imaging-based protein arrays for high-throughput screening of protein-protein interaction inhibitors.
    Jung SO; Ro HS; Kho BH; Shin YB; Kim MG; Chung BH
    Proteomics; 2005 Nov; 5(17):4427-31. PubMed ID: 16196090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for fabricating uni-dsDNA microarray chip for analyzing DNA-binding proteins.
    Wang JK; Li TX; Lu ZH
    J Biochem Biophys Methods; 2005 May; 63(2):100-10. PubMed ID: 15913781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions on GST-fusion protein arrays with a spectral surface plasmon resonance biosensor.
    Jung JW; Jung SH; Kim HS; Yuk JS; Park JB; Kim YM; Han JA; Kim PH; Ha KS
    Proteomics; 2006 Feb; 6(4):1110-20. PubMed ID: 16402361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid surface platform for the simultaneous detection of proteins and DNAs using a surface plasmon resonance imaging sensor.
    Ladd J; Taylor AD; Piliarik M; Homola J; Jiang S
    Anal Chem; 2008 Jun; 80(11):4231-6. PubMed ID: 18457413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label free analysis of transcription factors using microcantilever arrays.
    Huber F; Hegner M; Gerber C; Güntherodt HJ; Lang HP
    Biosens Bioelectron; 2006 Feb; 21(8):1599-605. PubMed ID: 16137876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-directed and self-oriented immobilization of antibody by protein G-DNA conjugate.
    Jung Y; Lee JM; Jung H; Chung BH
    Anal Chem; 2007 Sep; 79(17):6534-41. PubMed ID: 17668928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel approach of protein immobilization for protein chips using an oligo-cysteine tag.
    Ichihara T; Akada JK; Kamei S; Ohshiro S; Sato D; Fujimoto M; Kuramitsu Y; Nakamura K
    J Proteome Res; 2006 Sep; 5(9):2144-51. PubMed ID: 16944925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential binding studies applying functional protein microarrays and surface plasmon resonance.
    Seitz H; Hutschenreiter S; Hultschig C; Zeilinger C; Zimmermann B; Kleinjung F; Schuchhardt J; Eickhoff H; Herberg FW
    Proteomics; 2006 Oct; 6(19):5132-9. PubMed ID: 16912968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Affibody protein capture microarrays: synthesis and evaluation of random and directed immobilization of affibody molecules.
    Renberg B; Shiroyama I; Engfeldt T; Nygren PK; Karlström AE
    Anal Biochem; 2005 Jun; 341(2):334-43. PubMed ID: 15907880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of biomolecular interaction between biotin and streptavidin on a self-assembled monolayer using magnetic nanoparticles.
    Arakaki A; Hideshima S; Nakagawa T; Niwa D; Tanaka T; Matsunaga T; Osaka T
    Biotechnol Bioeng; 2004 Nov; 88(4):543-6. PubMed ID: 15384052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of highly sensitive protein array using reactive polymer.
    Shiroya T; Tanaka H; Hanasaki M; Takeuchi H
    Methods Mol Biol; 2009; 577():215-25. PubMed ID: 19718519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.