BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 18396092)

  • 1. Plant glycosyl hydrolases and biofuels: a natural marriage.
    Lopez-Casado G; Urbanowicz BR; Damasceno CM; Rose JK
    Curr Opin Plant Biol; 2008 Jun; 11(3):329-37. PubMed ID: 18396092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing native lignin macromolecular configuration in Arabidopsis thaliana in specific cell wall types: further insights into limited substrate degeneracy and assembly of the lignins of ref8, fah 1-2 and C4H::F5H lines.
    Patten AM; Jourdes M; Cardenas CL; Laskar DD; Nakazawa Y; Chung BY; Franceschi VR; Davin LB; Lewis NG
    Mol Biosyst; 2010 Mar; 6(3):499-515. PubMed ID: 20174679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production.
    Weng JK; Li X; Bonawitz ND; Chapple C
    Curr Opin Biotechnol; 2008 Apr; 19(2):166-72. PubMed ID: 18403196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solutions for dissolution--engineering cell walls for deconstruction.
    Mansfield SD
    Curr Opin Biotechnol; 2009 Jun; 20(3):286-94. PubMed ID: 19481436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into pectin methylesterase structure and function.
    Pelloux J; Rustérucci C; Mellerowicz EJ
    Trends Plant Sci; 2007 Jun; 12(6):267-77. PubMed ID: 17499007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy.
    Carpita NC
    Curr Opin Biotechnol; 2012 Jun; 23(3):330-7. PubMed ID: 22209015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of transgenic glycoside hydrolases expressed in plants: T. reesei CBH I and A. cellulolyticus EI.
    Brunecky R; Baker JO; Wei H; Taylor LE; Himmel ME; Decker SR
    Methods Mol Biol; 2012; 908():197-211. PubMed ID: 22843401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of cell-wall stress as a hexose-dependent and osmosensitive regulator of plant responses.
    Hamann T; Bennett M; Mansfield J; Somerville C
    Plant J; 2009 Mar; 57(6):1015-26. PubMed ID: 19036034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry.
    Ferreira Filho JA; Horta MAC; Beloti LL; Dos Santos CA; de Souza AP
    BMC Genomics; 2017 Oct; 18(1):779. PubMed ID: 29025413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, regulation and utilization of lignocellulosic biomass.
    Harris D; DeBolt S
    Plant Biotechnol J; 2010 Apr; 8(3):244-62. PubMed ID: 20070874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose synthesis: a complex complex.
    Mutwil M; Debolt S; Persson S
    Curr Opin Plant Biol; 2008 Jun; 11(3):252-7. PubMed ID: 18485800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution and diversity of green plant cell walls.
    Popper ZA
    Curr Opin Plant Biol; 2008 Jun; 11(3):286-92. PubMed ID: 18406657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increase in cellulose accumulation and improvement of saccharification by overexpression of arabinofuranosidase in rice.
    Sumiyoshi M; Nakamura A; Nakamura H; Hakata M; Ichikawa H; Hirochika H; Ishii T; Satoh S; Iwai H
    PLoS One; 2013; 8(11):e78269. PubMed ID: 24223786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic degradation of (ligno)cellulose.
    Bornscheuer U; Buchholz K; Seibel J
    Angew Chem Int Ed Engl; 2014 Oct; 53(41):10876-93. PubMed ID: 25136976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant protein inhibitors of cell wall degrading enzymes.
    Juge N
    Trends Plant Sci; 2006 Jul; 11(7):359-67. PubMed ID: 16774842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding how the complex molecular architecture of mannan-degrading hydrolases contributes to plant cell wall degradation.
    Zhang X; Rogowski A; Zhao L; Hahn MG; Avci U; Knox JP; Gilbert HJ
    J Biol Chem; 2014 Jan; 289(4):2002-12. PubMed ID: 24297170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of nasturtium TmNXG1 complexes by crystallography and molecular dynamics provides detailed insight into substrate recognition by family GH16 xyloglucan endo-transglycosylases and endo-hydrolases.
    Mark P; Baumann MJ; Eklöf JM; Gullfot F; Michel G; Kallas AM; Teeri TT; Brumer H; Czjzek M
    Proteins; 2009 Jun; 75(4):820-36. PubMed ID: 19004021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugarcane cell wall structure and lignin distribution investigated by confocal and electron microscopy.
    Sant'Anna C; Costa LT; Abud Y; Biancatto L; Miguens FC; de Souza W
    Microsc Res Tech; 2013 Aug; 76(8):829-34. PubMed ID: 23733560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant glycoside hydrolases involved in cell wall polysaccharide degradation.
    Minic Z; Jouanin L
    Plant Physiol Biochem; 2006; 44(7-9):435-49. PubMed ID: 17023165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of polysaccharides and plant cell wall by endo-1,4-beta-glucanase and cellulose-binding domains.
    Levy I; Shani Z; Shoseyov O
    Biomol Eng; 2002 Jun; 19(1):17-30. PubMed ID: 12103362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.