These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 18396331)

  • 1. Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel.
    Kraehenbuehl TP; Zammaretti P; Van der Vlies AJ; Schoenmakers RG; Lutolf MP; Jaconi ME; Hubbell JA
    Biomaterials; 2008 Jun; 29(18):2757-66. PubMed ID: 18396331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach to modulate degradation and mesenchymal stem cell behavior in poly(ethylene glycol) networks.
    Hudalla GA; Eng TS; Murphy WL
    Biomacromolecules; 2008 Mar; 9(3):842-9. PubMed ID: 18288800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of matrix characteristics on fibroblast proliferation in 3D gels.
    Bott K; Upton Z; Schrobback K; Ehrbar M; Hubbell JA; Lutolf MP; Rizzi SC
    Biomaterials; 2010 Nov; 31(32):8454-64. PubMed ID: 20684983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel.
    Lee HJ; Lee JS; Chansakul T; Yu C; Elisseeff JH; Yu SM
    Biomaterials; 2006 Oct; 27(30):5268-76. PubMed ID: 16797067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering.
    LaNasa SM; Bryant SJ
    Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic extracellular matrices for in situ tissue engineering.
    Pratt AB; Weber FE; Schmoekel HG; Müller R; Hubbell JA
    Biotechnol Bioeng; 2004 Apr; 86(1):27-36. PubMed ID: 15007838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of reconstituted collagen matrix on fates of mouse embryonic stem cells before and after induction for chondrogenic differentiation.
    Yeung CW; Cheah K; Chan D; Chan BP
    Tissue Eng Part A; 2009 Oct; 15(10):3071-85. PubMed ID: 19331579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctional characteristics.
    Rizzi SC; Ehrbar M; Halstenberg S; Raeber GP; Schmoekel HG; Hagenmüller H; Müller R; Weber FE; Hubbell JA
    Biomacromolecules; 2006 Nov; 7(11):3019-29. PubMed ID: 17096527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks.
    Kutty JK; Cho E; Soo Lee J; Vyavahare NR; Webb K
    Biomaterials; 2007 Nov; 28(33):4928-38. PubMed ID: 17720239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergy between myogenic and non-myogenic cells in a 3D tissue-engineered craniofacial skeletal muscle construct.
    Brady MA; Lewis MP; Mudera V
    J Tissue Eng Regen Med; 2008 Oct; 2(7):408-17. PubMed ID: 18720445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The construction of 3D-engineered tissues composed of cells and extracellular matrices by hydrogel template approach.
    Matsusaki M; Yoshida H; Akashi M
    Biomaterials; 2007 Jun; 28(17):2729-37. PubMed ID: 17336376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells.
    Karp JM; Yeh J; Eng G; Fukuda J; Blumling J; Suh KY; Cheng J; Mahdavi A; Borenstein J; Langer R; Khademhosseini A
    Lab Chip; 2007 Jun; 7(6):786-94. PubMed ID: 17538722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM; Cole AA; Bjugstad KB; Mahoney MJ
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of macromer weight percent on neural cell growth in 2D and 3D nondegradable PEG hydrogel culture.
    Lampe KJ; Mooney RG; Bjugstad KB; Mahoney MJ
    J Biomed Mater Res A; 2010 Sep; 94(4):1162-71. PubMed ID: 20694983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogel-based three-dimensional matrix for neural cells.
    Bellamkonda R; Ranieri JP; Bouche N; Aebischer P
    J Biomed Mater Res; 1995 May; 29(5):663-71. PubMed ID: 7622552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of enzymatically degradable poly(ethylene glycol) hydrogels on smooth muscle cell phenotype.
    Adelöw C; Segura T; Hubbell JA; Frey P
    Biomaterials; 2008 Jan; 29(3):314-26. PubMed ID: 17953986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.
    Brink KS; Yang PJ; Temenoff JS
    Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of hepatocellular function within PEG hydrogels.
    Underhill GH; Chen AA; Albrecht DR; Bhatia SN
    Biomaterials; 2007 Jan; 28(2):256-70. PubMed ID: 16979755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin-polysaccharide cardiac patches in vitro.
    Yang MC; Wang SS; Chou NK; Chi NH; Huang YY; Chang YL; Shieh MJ; Chung TW
    Biomaterials; 2009 Aug; 30(22):3757-65. PubMed ID: 19410289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.