These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 18396473)

  • 1. Development of porous lamellar poly(L-lactic acid) scaffolds by conventional injection molding process.
    Ghosh S; Viana JC; Reis RL; Mano JF
    Acta Biomater; 2008 Jul; 4(4):887-96. PubMed ID: 18396473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The double porogen approach as a new technique for the fabrication of interconnected poly(L-lactic acid) and starch based biodegradable scaffolds.
    Ghosh S; Viana JC; Reis RL; Mano JF
    J Mater Sci Mater Med; 2007 Feb; 18(2):185-93. PubMed ID: 17323149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering.
    Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds.
    Whited BM; Whitney JR; Hofmann MC; Xu Y; Rylander MN
    Biomaterials; 2011 Mar; 32(9):2294-304. PubMed ID: 21195474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of poly(lactic acid)-poly(ethylene oxide) electrospun membranes with controlled micro to nanofiber sizes.
    Ribeiro C; Sencadas V; Caparros C; Gómez Ribelles JL; Lanceros-Méndez S
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6746-53. PubMed ID: 22962817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering.
    Frydrych M; Román S; MacNeil S; Chen B
    Acta Biomater; 2015 May; 18():40-9. PubMed ID: 25769230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Manufacture and study of porous poly(l-lactic acid) (PLLA)/beta-tricalcium phosphate (beta-TCP) composite].
    Chen R; Chen H; Han J; Zhou D; Zheng C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):177-80. PubMed ID: 11450528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating co-continuous polymer blends to create PCL scaffolds with fully interconnected and anisotropic pore architecture.
    Guarino V; Guaccio A; Ambrosio L
    J Appl Biomater Biomech; 2011; 9(1):34-9. PubMed ID: 21445831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM
    J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic mechanical behavior of starch-based scaffolds in dry and physiologically simulated conditions: effect of porosity and pore size.
    Ghosh S; Gutierrez V; Fernández C; Rodriguez-Perez MA; Viana JC; Reis RL; Mano JF
    Acta Biomater; 2008 Jul; 4(4):950-9. PubMed ID: 18331817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyester scaffolds with bimodal pore size distribution for tissue engineering.
    Sosnowski S; Woźniak P; Lewandowska-Szumieł M
    Macromol Biosci; 2006 Jun; 6(6):425-34. PubMed ID: 16761274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical characterization of thin semi-porous poly(L-lactic acid)/poly(ethylene glycol) membranes for tissue engineering.
    Swaminathan V; Tchao R; Jonnalagadda S
    J Biomater Sci Polym Ed; 2007; 18(10):1321-33. PubMed ID: 17939889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of interconnected porous biodegradable poly(ε-caprolactone) load bearing scaffolds.
    Allaf RM; Rivero IV
    J Mater Sci Mater Med; 2011 Aug; 22(8):1843-53. PubMed ID: 21670998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled preparation and properties of porous poly(L-lactide) obtained from a co-continuous blend of two biodegradable polymers.
    Sarazin P; Roy X; Favis BD
    Biomaterials; 2004 Dec; 25(28):5965-78. PubMed ID: 15183611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of PLLA-chitosan hybrid scaffolds with improved cell compatibility.
    Jiao Y; Liu Z; Zhou C
    J Biomed Mater Res A; 2007 Mar; 80(4):820-5. PubMed ID: 17058212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of flexible and elastic poly(trimethylene carbonate) structures by stereolithography.
    Schüller-Ravoo S; Feijen J; Grijpma DW
    Macromol Biosci; 2011 Dec; 11(12):1662-71. PubMed ID: 22006829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved biocompatibility of novel poly(L-lactic acid)/β-tricalcium phosphate scaffolds prepared by an organic solvent-free method.
    Zhao XF; Li XD; Kang YQ; Yuan Q
    Int J Nanomedicine; 2011; 6():1385-90. PubMed ID: 21760732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.