BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 1839659)

  • 1. [Energy metabolism of isolated hepatocytes at various levels of oxidative phosphorylation uncoupling].
    Toshchakov VIu; Morozova GI; Anishchenko NA
    Biokhimiia; 1991 Dec; 56(12):2131-9. PubMed ID: 1839659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control mechanisms of energy-dependent metabolic pathways in hepatocytes.
    Tager JM; Wanders RJ; Groen AK; van der Meer R; Akerboom TP; Meijer AJ
    Acta Biol Med Ger; 1981; 40(7-8):895-906. PubMed ID: 7036612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Experimental effect of bruneomycin on the energy metabolism of liver tissue].
    Gol'dberg ED; Sal'nik GA
    Antibiotiki; 1975 Jan; 20(1):66-71. PubMed ID: 164820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The actions of fisetin on glucose metabolism in the rat liver.
    Constantin RP; Constantin J; Pagadigorria CL; Ishii-Iwamoto EL; Bracht A; Ono Mde K; Yamamoto NS
    Cell Biochem Funct; 2010 Mar; 28(2):149-58. PubMed ID: 20084677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic effects of propofol in the isolated perfused rat liver.
    Acco A; Comar JF; Bracht A
    Basic Clin Pharmacol Toxicol; 2004 Oct; 95(4):166-74. PubMed ID: 15504152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG; Stevens MJ
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide content, oxidative phosphorylation, morphology, and fertilizing capacity of turbot (Psetta maxima) spermatozoa during the motility period.
    Dreanno C; Cosson J; Suquet M; Seguin F; Dorange G; Billard R
    Mol Reprod Dev; 1999 Jun; 53(2):230-43. PubMed ID: 10331461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of Na+ and K+ transport with aerobic energy metabolism in slices of Morris hepatoma 3924A.
    Galeotti T; van Rossum GD; Russo MA; Palombini G
    Cancer Res; 1976 Nov; 36(11 Pt 1):4175-84. PubMed ID: 184927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Energy status of rat liver during the dynamics of cold adaptation].
    Shabalina IG; Kolpakov AR; Solov'ev VN; Kolosova NG; Panin LE
    Biokhimiia; 1995 Mar; 60(3):441-9. PubMed ID: 7734617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations of the glycolytic pathway and adenine nucleotide state in livers of clofibrate treated rats.
    Wilkening J; Schwandt P
    Horm Metab Res; 1977 Mar; 9(2):132-6. PubMed ID: 140842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bivascular liver perfusion in the anterograde and retrograde modes: zonation of the response to inhibitors of oxidative phosphorylation.
    Constantin J; Ishii-Iwamoto E; Suzuki-Kemmelmeier F; Yamamoto NS; Bracht A
    Cell Biochem Funct; 1995 Sep; 13(3):201-9. PubMed ID: 7554099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Energy metabolism in the liver of rats fed a diet contaminated with dithiocarbamates].
    Griffaton G; Faudemay F; Rozen R; Naon R; Lowy R
    Ann Nutr Aliment; 1975; 29(2):103-16. PubMed ID: 1190641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of precursors of biosyntheses on the energy metabolism of the liver cell.
    Letko G; Küster U; Pohl K
    Biomed Biochim Acta; 1983; 42(4):323-33. PubMed ID: 6312977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic effects of carbenoxolone in rat liver.
    Pivato LS; Constantin RP; Ishii-Iwamoto EL; Kelmer-Bracht AM; Yamamoto NS; Constantin J; Bracht A
    J Biochem Mol Toxicol; 2006; 20(5):230-40. PubMed ID: 17009240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlorpropham induces mitochondrial dysfunction in rat hepatocytes.
    Nakagawa Y; Nakajima K; Suzuki T
    Toxicology; 2004 Aug; 200(2-3):123-33. PubMed ID: 15212809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interrelation between the inhibition of glycolytic flux by silibinin and the lowering of mitochondrial ROS production in perifused rat hepatocytes.
    Detaille D; Sanchez C; Sanz N; Lopez-Novoa JM; Leverve X; El-Mir MY
    Life Sci; 2008 May; 82(21-22):1070-6. PubMed ID: 18448125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy balance in rabbit reticulocytes and its control by adenine nucleotides.
    Augustin HW; Spengler V
    Biomed Biochim Acta; 1983; 42(11-12):S223-8. PubMed ID: 6675695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of vitamin E and vitamin C and inhibition of brain mitochondrial oxidative phosphorylation by peroxynitrite.
    Vatassery GT; Lai JC; DeMaster EG; Smith WE; Quach HT
    J Neurosci Res; 2004 Mar; 75(6):845-53. PubMed ID: 14994345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actions of juglone on energy metabolism in the rat liver.
    Saling SC; Comar JF; Mito MS; Peralta RM; Bracht A
    Toxicol Appl Pharmacol; 2011 Dec; 257(3):319-27. PubMed ID: 21945490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of pyridine nucleotides and depletion of ATP and ADP during calcium- and inorganic phosphate-induced mitochondrial permeability transition.
    Savage MK; Reed DJ
    Biochem Biophys Res Commun; 1994 May; 200(3):1615-20. PubMed ID: 8185617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.