These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 18396840)
1. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of white mold, by Pseudomonas species on canola petals. Behnam S; Ahmadzadeh M; Sharifi Tehrani A; Hedjaroude GA; Farzaneh M Commun Agric Appl Biol Sci; 2007; 72(4):993-6. PubMed ID: 18396840 [TBL] [Abstract][Full Text] [Related]
2. Effect of timing of application Pseudomonas fluorescens in suppression Sclerotinia sclerotiorum, the causal agent of white mold in canola. Ahmadzadeh M; Behnam S; Sharifi Tehrani A; Hedjaroude GA Commun Agric Appl Biol Sci; 2007; 72(4):957-60. PubMed ID: 18396834 [TBL] [Abstract][Full Text] [Related]
3. Effect of timing of application and population dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists. Savchuk S; Dilantha Fernando WG FEMS Microbiol Ecol; 2004 Sep; 49(3):379-88. PubMed ID: 19712288 [TBL] [Abstract][Full Text] [Related]
4. [In vitro control of Sclerotinia sclerotiorum and Gaeumannomyces graminis by bacteria of the fluorescent Pseudomonas group]. Andreoli YE; Laich FS; Navarro CA Rev Argent Microbiol; 1993; 25(2):70-9. PubMed ID: 8234734 [TBL] [Abstract][Full Text] [Related]
5. Cyclosporine A from a nonpathogenic Fusarium oxysporum suppressing Sclerotinia sclerotiorum. Rodríguez MA; Cabrera G; Godeas A J Appl Microbiol; 2006 Mar; 100(3):575-86. PubMed ID: 16478497 [TBL] [Abstract][Full Text] [Related]
6. A mutant of the nematophagous fungus Paecilomyces lilacinus (Thom) is a novel biocontrol agent for Sclerotinia sclerotiorum. Yang F; Abdelnabby H; Xiao Y Microb Pathog; 2015 Dec; 89():169-76. PubMed ID: 26521137 [TBL] [Abstract][Full Text] [Related]
7. Biocontrol traits and antagonistic potential of Bacillus amyloliquefaciens strain NJZJSB3 against Sclerotinia sclerotiorum, a causal agent of canola stem rot. Wu Y; Yuan J; Raza W; Shen Q; Huang Q J Microbiol Biotechnol; 2014 Oct; 24(10):1327-36. PubMed ID: 24861342 [TBL] [Abstract][Full Text] [Related]
8. The use of Pseudomonas fluorescens P13 to control sclerotinia stem rot (Sclerotinia sclerotiorum) of oilseed rape. Li H; Li H; Bai Y; Wang J; Nie M; Li B; Xiao M J Microbiol; 2011 Dec; 49(6):884-9. PubMed ID: 22203550 [TBL] [Abstract][Full Text] [Related]
9. Biocontrol of Phytophthora cactorum the causal agent of root and crown rot on apple (Malus domestica) by formulated Pseudomonas fluorescens. Farzaneh M; Sharifi-Tehrani A; Ahmadzadeh M; Zad J Commun Agric Appl Biol Sci; 2007; 72(4):891-900. PubMed ID: 18396826 [TBL] [Abstract][Full Text] [Related]
10. Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge. Liang Y; Srivastava S; Rahman MH; Strelkov SE; Kav NN J Agric Food Chem; 2008 Mar; 56(6):1963-76. PubMed ID: 18290614 [TBL] [Abstract][Full Text] [Related]
11. Detection of antibiotic-related genes from bacterial biocontrol agents with polymerase chain reaction. Zhang Y; Fernando WG; de Kievit TR; Berry C; Daayf F; Paulitz TC Can J Microbiol; 2006 May; 52(5):476-81. PubMed ID: 16699573 [TBL] [Abstract][Full Text] [Related]
12. Detection of Sclerotinia sclerotiorum using a monomeric and dimeric single-chain fragment variable (scFv) antibody. Yajima W; Rahman MH; Das D; Suresh MR; Kav NN J Agric Food Chem; 2008 Oct; 56(20):9455-63. PubMed ID: 18800799 [TBL] [Abstract][Full Text] [Related]
13. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks. Duke KA; Becker MG; Girard IJ; Millar JL; Dilantha Fernando WG; Belmonte MF; de Kievit TR BMC Genomics; 2017 Jun; 18(1):467. PubMed ID: 28629321 [TBL] [Abstract][Full Text] [Related]
14. A GacS deficiency does not affect Pseudomonas chlororaphis PA23 fitness when growing on canola, in aged batch culture or as a biofilm. Poritsanos N; Selin C; Fernando WG; Nakkeeran S; de Kievit TR Can J Microbiol; 2006 Dec; 52(12):1177-88. PubMed ID: 17473887 [TBL] [Abstract][Full Text] [Related]
15. Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.). Shweta B; Maheshwari DK; Dubey RC; Arora DS; Bajpai VK; Kang SC J Microbiol Biotechnol; 2008 Sep; 18(9):1578-83. PubMed ID: 18852515 [TBL] [Abstract][Full Text] [Related]
16. Antifungal potential against Sclerotinia sclerotiorum (Lib.) de Bary and plant growth promoting abilities of Bacillus isolates from canola (Brassica napus L.) roots. Ribeiro IDA; Bach E; da Silva Moreira F; Müller AR; Rangel CP; Wilhelm CM; Barth AL; Passaglia LMP Microbiol Res; 2021 Jul; 248():126754. PubMed ID: 33848783 [TBL] [Abstract][Full Text] [Related]
17. Screening of Pseudomonas and Bacillus isolates for potential biocontrol of the damping-off of bean (Phaseolus coccineus). Peighami-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K Commun Agric Appl Biol Sci; 2009; 74(3):745-8. PubMed ID: 20222559 [TBL] [Abstract][Full Text] [Related]
18. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off. Peighamy-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K Commun Agric Appl Biol Sci; 2007; 72(4):951-6. PubMed ID: 18396833 [TBL] [Abstract][Full Text] [Related]
19. Pre-germinated conidia of Coniothyrium minitans enhances the foliar biological control of Sclerotinia sclerotiorum. Shi J; Li Y; Qian H; Du G; Chen J Biotechnol Lett; 2004 Nov; 26(21):1649-52. PubMed ID: 15604814 [TBL] [Abstract][Full Text] [Related]
20. Decreased incidence of disease caused by Sclerotinia sclerotiorum and improved plant vigor of oilseed rape with Bacillus subtilis Tu-100. Hu X; Roberts DP; Jiang M; Zhang Y Appl Microbiol Biotechnol; 2005 Oct; 68(6):802-7. PubMed ID: 15744488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]