These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 18396995)

  • 1. Modeling the acoustic radiation force in microfluidic chambers.
    Fisher KA; Miles R
    J Acoust Soc Am; 2008 Apr; 123(4):1862-5. PubMed ID: 18396995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics.
    Oberti S; Neild A; Möller D; Dual J
    Ultrasonics; 2008 Nov; 48(6-7):529-36. PubMed ID: 18649908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of two-dimensional acoustic resonant modes in a particle separator.
    Townsend RJ; Hill M; Harris NR; White NM
    Ultrasonics; 2006 Dec; 44 Suppl 1():e467-71. PubMed ID: 16782151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling of particle paths passing through an ultrasonic standing wave.
    Townsend RJ; Hill M; Harris NR; White NM
    Ultrasonics; 2004 Apr; 42(1-9):319-24. PubMed ID: 15047305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations.
    Hagsäter SM; Jensen TG; Bruus H; Kutter JP
    Lab Chip; 2007 Oct; 7(10):1336-44. PubMed ID: 17896019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial confinement of ultrasonic force fields in microfluidic channels.
    Manneberg O; Melker Hagsäter S; Svennebring J; Hertz HM; Kutter JP; Bruus H; Wiklund M
    Ultrasonics; 2009 Jan; 49(1):112-9. PubMed ID: 18701122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic particle filter with adjustable effective pore size for automated sample preparation.
    Jung B; Fisher K; Ness KD; Rose KA; Mariella RP
    Anal Chem; 2008 Nov; 80(22):8447-52. PubMed ID: 18847218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stirring and mixing of liquids using acoustic radiation force.
    Sarvazyan A; Ostrovsky L
    J Acoust Soc Am; 2009 Jun; 125(6):3548-54. PubMed ID: 19507936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer.
    Johansson L; Nikolajeff F; Johansson S; Thorslund S
    Anal Chem; 2009 Jul; 81(13):5188-96. PubMed ID: 19492800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.
    Lamprecht A; Lakämper S; Baasch T; Schaap IA; Dual J
    Lab Chip; 2016 Jul; 16(14):2682-93. PubMed ID: 27302661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of the acoustic radiation force exerted on a sphere by standing and quasistanding zero-order Bessel beam tweezers of variable half-cone angles.
    Mitri FG; Fellah ZE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2469-78. PubMed ID: 19049926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of interparticle radiation force acting on rigid spheres in a standing wave.
    Sepehrirahnama S; Lim KM; Chau FS
    J Acoust Soc Am; 2015 May; 137(5):2614-22. PubMed ID: 25994694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Varying the agglomeration position of particles in a micro-channel using Acoustic Radiation Force beyond the resonance condition.
    Dron O; Aider JL
    Ultrasonics; 2013 Sep; 53(7):1280-7. PubMed ID: 23628114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective mixing of laminar flows at a density interface by an integrated ultrasonic transducer.
    Johansson L; Johansson S; Nikolajeff F; Thorslund S
    Lab Chip; 2009 Jan; 9(2):297-304. PubMed ID: 19107288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mode-switching: a new technique for electronically varying the agglomeration position in an acoustic particle manipulator.
    Glynne-Jones P; Boltryk RJ; Harris NR; Cranny AW; Hill M
    Ultrasonics; 2010 Jan; 50(1):68-75. PubMed ID: 19709711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic radiation force analysis using finite difference time domain method.
    Grinenko A; Wilcox PD; Courtney CR; Drinkwater BW
    J Acoust Soc Am; 2012 May; 131(5):3664-70. PubMed ID: 22559343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic Manipulation of Bio-Particles at High Frequencies: An Analytical and Simulation Approach.
    Samandari M; Abrinia K; Sanati-Nezhad A
    Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation dominated acoustophoresis driven by surface acoustic waves.
    Guo J; Kang Y; Ai Y
    J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustofluidics 7: The acoustic radiation force on small particles.
    Bruus H
    Lab Chip; 2012 Mar; 12(6):1014-21. PubMed ID: 22349937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles.
    Hahn P; Leibacher I; Baasch T; Dual J
    Lab Chip; 2015 Nov; 15(22):4302-13. PubMed ID: 26448531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.