These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 18396999)

  • 1. Nonlinear source-filter coupling in phonation: vocal exercises.
    Titze I; Riede T; Popolo P
    J Acoust Soc Am; 2008 Apr; 123(4):1902-15. PubMed ID: 18396999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear source-filter coupling in phonation: theory.
    Titze IR
    J Acoust Soc Am; 2008 May; 123(5):2733-49. PubMed ID: 18529191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation and analysis of in vivo vocal fold tissue instabilities produced by nonlinear source-filter coupling: a case study.
    Zañartu M; Mehta DD; Ho JC; Wodicka GR; Hillman RE
    J Acoust Soc Am; 2011 Jan; 129(1):326-39. PubMed ID: 21303014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vocal instabilities in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2018 Sep; 144(3):1216. PubMed ID: 30424612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed imaging of vocal fold vibrations and larynx movements within vocalizations of different vowels.
    Maurer D; Hess M; Gross M
    Ann Otol Rhinol Laryngol; 1996 Dec; 105(12):975-81. PubMed ID: 8973285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of subglottal acoustics on laboratory models of phonation.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Sep; 120(3):1558-69. PubMed ID: 17004478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear source-filter coupling due to the addition of a simplified vocal tract model for excised larynx experiments.
    Smith BL; Nemcek SP; Swinarski KA; Jiang JJ
    J Voice; 2013 May; 27(3):261-6. PubMed ID: 23490131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Evidence That Nonlinear Source-Filter Coupling Affects Harmonic Intensity and fo Stability During Instances of Harmonics Crossing Formants.
    Maxfield L; Palaparthi A; Titze I
    J Voice; 2017 Mar; 31(2):149-156. PubMed ID: 27501922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of chaotic vibrations in symmetric vocal folds.
    Jiang JJ; Zhang Y; Stern J
    J Acoust Soc Am; 2001 Oct; 110(4):2120-8. PubMed ID: 11681389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational dynamics of vocal folds using nonlinear normal modes.
    Pinheiro AP; Kerschen G
    Med Eng Phys; 2013 Aug; 35(8):1079-88. PubMed ID: 23218815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study on nonlinear source-filter interaction using synthetic vocal fold models.
    Migimatsu K; Tokuda IT
    J Acoust Soc Am; 2019 Aug; 146(2):983. PubMed ID: 31472538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling source-source and source-filter acoustic interaction in birdsong.
    Laje R; Mindlin GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036218. PubMed ID: 16241559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictions of fundamental frequency changes during phonation based on a biomechanical model of the vocal fold lamina propria.
    Zhang K; Siegmund T; Chan RW; Fu M
    J Voice; 2009 May; 23(3):277-82. PubMed ID: 18191379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vocal fold vibration in simulated head voice phonation in excised canine larynges.
    Shiotani A; Fukuda H; Kawaida M; Kanzaki J
    Eur Arch Otorhinolaryngol; 1996; 253(6):356-63. PubMed ID: 8858261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear modelling of double and triple period pitch breaks in vocal fold vibration.
    Menzer F; Buchli J; Howard DM; Ijspeert AJ
    Logoped Phoniatr Vocol; 2006; 31(1):36-42. PubMed ID: 16517521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of source-tract acoustical coupling on the oscillation onset of the vocal folds.
    Lucero JC; Lourenço K; Hermant N; Van Hirtum A; Pelorson X
    J Acoust Soc Am; 2012 Jul; 132(1):403-11. PubMed ID: 22779487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroglottographic study of seven semi-occluded exercises: LaxVox, straw, lip-trill, tongue-trill, humming, hand-over-mouth, and tongue-trill combined with hand-over-mouth.
    Andrade PA; Wood G; Ratcliffe P; Epstein R; Pijper A; Svec JG
    J Voice; 2014 Sep; 28(5):589-95. PubMed ID: 24560003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of artificially lengthened vocal tract on vocal fold oscillation's fundamental frequency.
    Hanamitsu M; Kataoka H
    J Voice; 2004 Jun; 18(2):169-75. PubMed ID: 15193649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal chaos in excised larynx vibrations.
    Zhang Y; Jiang JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):035201. PubMed ID: 16241503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Objective analysis of vocal warm-up with special reference to ergonomic factors.
    Vintturi J; Alku P; Lauri ER; Sala E; Sihvo M; Vilkman I
    J Voice; 2001 Mar; 15(1):36-53. PubMed ID: 12269633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.