These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 18397069)

  • 1. The homogeneous nucleation of 1-pentanol in a laminar flow diffusion chamber: the effect of pressure and kind of carrier gas.
    Brus D; Hyvärinen AP; Wedekind J; Viisanen Y; Kulmala M; Zdímal V; Smolík J; Lihavainen H
    J Chem Phys; 2008 Apr; 128(13):134312. PubMed ID: 18397069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium.
    Hyvärinen AP; Brus D; Zdímal V; Smolík J; Kulmala M; Viisanen Y; Lihavainen H
    J Chem Phys; 2006 Jun; 124(22):224304. PubMed ID: 16784271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homogeneous nucleation rates of 1-pentanol.
    Iland K; Wedekind J; Wölk J; Wagner PE; Strey R
    J Chem Phys; 2004 Dec; 121(24):12259-64. PubMed ID: 15606243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneous nucleation rate measurements of 1-propanol in helium: the effect of carrier gas pressure.
    Brus D; Zdímal V; Stratmann F
    J Chem Phys; 2006 Apr; 124(16):164306. PubMed ID: 16674134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous nucleation rates of higher n-alcohols measured in a laminar flow diffusion chamber.
    Hyvärinen AP; Lihavainen H; Viisanen Y; Kulmala M
    J Chem Phys; 2004 Jun; 120(24):11621-33. PubMed ID: 15268196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Re-evaluation of the pressure effect for nucleation in laminar flow diffusion chamber experiments with fluent and the fine particle model.
    Herrmann E; Hyvärinen AP; Brus D; Lihavainen H; Kulmala M
    J Phys Chem A; 2009 Feb; 113(8):1434-9. PubMed ID: 19191511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homogeneous water nucleation in a laminar flow diffusion chamber.
    Manka AA; Brus D; Hyvärinen AP; Lihavainen H; Wölk J; Strey R
    J Chem Phys; 2010 Jun; 132(24):244505. PubMed ID: 20590204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous nucleation rate measurements of 1-butanol in helium: a comparative study of a thermal diffusion cloud chamber and a laminar flow diffusion chamber.
    Brus D; Hyvärinen AP; Zdímal V; Lihavainen H
    J Chem Phys; 2005 Jun; 122(21):214506. PubMed ID: 15974753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous nucleation rate measurements in supersaturated water vapor II.
    Brus D; Zdímal V; Uchtmann H
    J Chem Phys; 2009 Aug; 131(7):074507. PubMed ID: 19708751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of surface tension and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation ratio: metal vapor homogeneous nucleation.
    Onischuk AA; Purtov PA; Baklanov AM; Karasev VV; Vosel SV
    J Chem Phys; 2006 Jan; 124(1):14506. PubMed ID: 16409040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation simulations using the fluid dynamics software FLUENT with the fine particle model FPM.
    Herrmann E; Lihavainen H; Hyvärinen AP; Riipinen I; Wilck M; Stratmann F; Kulmala M
    J Phys Chem A; 2006 Nov; 110(45):12448-55. PubMed ID: 17091949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data evaluation of laminar flow diffusion chamber nucleation experiments with different computational methods.
    Mitrakos D; Zdímal V; Brus D; Housiadas C
    J Chem Phys; 2008 Aug; 129(5):054503. PubMed ID: 18698910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homogeneous nucleation rate measurements in supersaturated water vapor.
    Brus D; Zdímal V; Smolík J
    J Chem Phys; 2008 Nov; 129(17):174501. PubMed ID: 19045352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cryogenic supersonic nozzle apparatus to study homogeneous nucleation of Ar and other simple molecules.
    Sinha S; Laksmono H; Wyslouzil BE
    Rev Sci Instrum; 2008 Nov; 79(11):114101. PubMed ID: 19045901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous nucleation of nitrogen.
    Iland K; Wedekind J; Wölk J; Strey R
    J Chem Phys; 2009 Mar; 130(11):114508. PubMed ID: 19317546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous water nucleation: Experimental study on pressure and carrier gas effects.
    Campagna MM; Hrubý J; van Dongen MEH; Smeulders DMJ
    J Chem Phys; 2020 Oct; 153(16):164303. PubMed ID: 33138427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the effect of pressure and carrier gas on homogeneous water nucleation.
    Fransen MA; Hrubý J; Smeulders DM; van Dongen ME
    J Chem Phys; 2015 Apr; 142(16):164307. PubMed ID: 25933764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attainable superheat of argon-helium, argon-neon solutions.
    Baidakov VG; Kaverin AM; Andbaeva VN
    J Phys Chem B; 2008 Oct; 112(41):12973-5. PubMed ID: 18798666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogeneous water nucleation in argon, nitrogen, and nitrous oxide as carrier gases.
    Lukianov M; Lukianova T; Hrubý J
    J Chem Phys; 2023 Mar; 158(12):124301. PubMed ID: 37003775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homogeneous nucleation and droplet growth in supersaturated argon vapor: the cryogenic nucleation pulse chamber.
    Fladerer A; Strey R
    J Chem Phys; 2006 Apr; 124(16):164710. PubMed ID: 16674160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.