BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 18397117)

  • 1. Control analysis of the role of triosephosphate isomerase in glucose metabolism in Lactococcus lactis.
    Solem C; Koebmann B; Jensen PR
    IET Syst Biol; 2008 Mar; 2(2):64-72. PubMed ID: 18397117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio.
    Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M
    J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triosephosphate isomerase (TPI) facilitates the replication of WSSV in Exopalaemon carinicauda.
    Liu F; Li S; Liu G; Li F
    Dev Comp Immunol; 2017 Jun; 71():28-36. PubMed ID: 28126554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Lactococcus lactis triosephosphate isomerase gene, tpi, is monocistronic.
    Cancilla MR; Davidson BE; Hillier AJ; Nguyen NY; Thompson J
    Microbiology (Reading); 1995 Jan; 141 ( Pt 1)():229-38. PubMed ID: 7534588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triosephosphate isomerase deficiency: consequences of an inherited mutation at mRNA, protein and metabolic levels.
    Oláh J; Orosz F; Puskás LG; Hackler L; Horányi M; Polgár L; Hollán S; Ovádi J
    Biochem J; 2005 Dec; 392(Pt 3):675-83. PubMed ID: 16086671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic correction of triose phosphate isomerase deficiency in vitro by complementation.
    Ationu A; Humphries A; Bellingham A; Layton M
    Biochem Biophys Res Commun; 1997 Mar; 232(2):528-31. PubMed ID: 9125215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triosephosphate isomerase deficiency: predictions and facts.
    Orosz F; Vértessy BG; Hollán S; Horányi M; Ovádi J
    J Theor Biol; 1996 Oct; 182(3):437-47. PubMed ID: 8944178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway.
    Mutuku JM; Nose A
    Plant Cell Physiol; 2012 Jun; 53(6):1017-32. PubMed ID: 22492233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of a triosephosphate isomerase non-catalytic function crucial to behavior and longevity.
    Roland BP; Stuchul KA; Larsen SB; Amrich CG; Vandemark AP; Celotto AM; Palladino MJ
    J Cell Sci; 2013 Jul; 126(Pt 14):3151-8. PubMed ID: 23641070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Newly discovered roles of triosephosphate isomerase including functions within the nucleus.
    Myers TD; Palladino MJ
    Mol Med; 2023 Jan; 29(1):18. PubMed ID: 36721084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
    Mercade M; Cocaign-Bousquet M; Loubière P
    J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triosephosphate isomerase is dispensable in vitro yet essential for Mycobacterium tuberculosis to establish infection.
    Trujillo C; Blumenthal A; Marrero J; Rhee KY; Schnappinger D; Ehrt S
    mBio; 2014 Apr; 5(2):e00085. PubMed ID: 24757211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis.
    Melchiorsen CR; Jokumsen KV; Villadsen J; Israelsen H; Arnau J
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):338-44. PubMed ID: 11935185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy metabolism and ageing regulation: metabolically driven deamidation of triosephosphate isomerase may contribute to proteostatic dysfunction.
    Hipkiss AR
    Ageing Res Rev; 2011 Sep; 10(4):498-502. PubMed ID: 21651995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate product equilibrium on a reversible enzyme, triosephosphate isomerase.
    Rozovsky S; McDermott AE
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2080-5. PubMed ID: 17287353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis.
    Andersen HW; Pedersen MB; Hammer K; Jensen PR
    Eur J Biochem; 2001 Dec; 268(24):6379-89. PubMed ID: 11737192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose metabolism and regulation of glycolysis in Lactococcus lactis strains with decreased lactate dehydrogenase activity.
    Garrigues C; Goupil-Feuillerat N; Cocaign-Bousquet M; Renault P; Lindley ND; Loubiere P
    Metab Eng; 2001 Jul; 3(3):211-7. PubMed ID: 11461143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control analysis as a tool to understand the formation of the las operon in Lactococcus lactis.
    Koebmann B; Solem C; Jensen PR
    FEBS J; 2005 May; 272(9):2292-303. PubMed ID: 15853813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control analysis of the importance of phosphoglycerate enolase for metabolic fluxes in Lactococcus lactis subsp. lactis IL1403.
    Koebmann B; Solem C; Jensen PR
    Syst Biol (Stevenage); 2006 Sep; 153(5):346-9. PubMed ID: 16986314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced association of mutant triosephosphate isomerase to red cell membranes and to brain microtubules.
    Orosz F; Wágner G; Liliom K; Kovács J; Baróti K; Horányi M; Farkas T; Hollán S; Ovádi J
    Proc Natl Acad Sci U S A; 2000 Feb; 97(3):1026-31. PubMed ID: 10655478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.