These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 18397307)

  • 1. Changes in the photosynthetic reaction centre II in the diatom Phaeodactylum tricornutum result in non-photochemical fluorescence quenching.
    Eisenstadt D; Ohad I; Keren N; Kaplan A
    Environ Microbiol; 2008 Aug; 10(8):1997-2007. PubMed ID: 18397307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In diatoms, the transthylakoid proton gradient regulates the photoprotective non-photochemical fluorescence quenching beyond its control on the xanthophyll cycle.
    Lavaud J; Kroth PG
    Plant Cell Physiol; 2006 Jul; 47(7):1010-6. PubMed ID: 16699176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana.
    Grouneva I; Jakob T; Wilhelm C; Goss R
    Biochim Biophys Acta; 2009 Jul; 1787(7):929-38. PubMed ID: 19232316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light emission originating from photosystem II radical pair recombination is sensitive to zeaxanthin related non-photochemical quenching (NPQ).
    Wagner H; Gilbert M; Goss R; Wilhelm C
    J Photochem Photobiol B; 2006 Jun; 83(3):172-9. PubMed ID: 16488152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum.
    Lavaud J; Rousseau B; van Gorkom HJ; Etienne AL
    Plant Physiol; 2002 Jul; 129(3):1398-406. PubMed ID: 12114593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation.
    Heber U; Bilger W; Shuvalov VA
    J Exp Bot; 2006; 57(12):2993-3006. PubMed ID: 16893979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum.
    Giovagnetti V; Ruban AV
    Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):218-230. PubMed ID: 27989819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms.
    Lavaud J; Rousseau B; Etienne AL
    Biochemistry; 2003 May; 42(19):5802-8. PubMed ID: 12741838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection.
    Horton P; Ruban A
    J Exp Bot; 2005 Jan; 56(411):365-73. PubMed ID: 15557295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana.
    Grouneva I; Jakob T; Wilhelm C; Goss R
    Plant Cell Physiol; 2008 Aug; 49(8):1217-25. PubMed ID: 18587148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optimized protocol for the preparation of oxygen-evolving thylakoid membranes from Cyclotella meneghiniana provides a tool for the investigation of diatom plastidic electron transport.
    Kansy M; Gurowietz A; Wilhelm C; Goss R
    BMC Plant Biol; 2017 Nov; 17(1):221. PubMed ID: 29178846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fine-tuning of NPQ in diatoms relies on the regulation of both xanthophyll cycle enzymes.
    Blommaert L; Chafai L; Bailleul B
    Sci Rep; 2021 Jun; 11(1):12750. PubMed ID: 34140542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraviolet radiation reduces the photoprotective capacity of the marine diatom Phaeodactylum tricornutum (Bacillariophyceae, Heterokontophyta).
    Halac S; García-Mendoza E; Banaszak AT
    Photochem Photobiol; 2009; 85(3):807-15. PubMed ID: 19140893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relaxation of the non-photochemical chlorophyll fluorescence quenching in diatoms: kinetics, components and mechanisms.
    Roháček K; Bertrand M; Moreau B; Jacquette B; Caplat C; Morant-Manceau A; Schoefs B
    Philos Trans R Soc Lond B Biol Sci; 2014 Apr; 369(1640):20130241. PubMed ID: 24591721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silencing of the violaxanthin de-epoxidase gene in the diatom Phaeodactylum tricornutum reduces diatoxanthin synthesis and non-photochemical quenching.
    Lavaud J; Materna AC; Sturm S; Vugrinec S; Kroth PG
    PLoS One; 2012; 7(5):e36806. PubMed ID: 22629333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acclimation of tobacco leaves to high light intensity drives the plastoquinone oxidation system--relationship among the fraction of open PSII centers, non-photochemical quenching of Chl fluorescence and the maximum quantum yield of PSII in the dark.
    Miyake C; Amako K; Shiraishi N; Sugimoto T
    Plant Cell Physiol; 2009 Apr; 50(4):730-43. PubMed ID: 19251745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses to desiccation stress in bryophytes and an important role of dithiothreitol-insensitive non-photochemical quenching against photoinhibition in dehydrated states.
    Nabe H; Funabiki R; Kashino Y; Koike H; Satoh K
    Plant Cell Physiol; 2007 Nov; 48(11):1548-57. PubMed ID: 17908696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action Spectrum of Photoinhibition in the Diatom Phaeodactylum tricornutum.
    Havurinne V; Tyystjärvi E
    Plant Cell Physiol; 2017 Dec; 58(12):2217-2225. PubMed ID: 29059446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis.
    Lepetit B; Gélin G; Lepetit M; Sturm S; Vugrinec S; Rogato A; Kroth PG; Falciatore A; Lavaud J
    New Phytol; 2017 Apr; 214(1):205-218. PubMed ID: 27870063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris).
    Zhu SQ; Chen MW; Ji BH; Jiao DM; Liang JS
    J Exp Bot; 2011 Aug; 62(13):4617-25. PubMed ID: 21642236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.