These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 18397325)

  • 1. Structure-activity relationships of wheat flavone O-methyltransferase: a homodimer of convenience.
    Kornblatt JA; Zhou JM; Ibrahim RK
    FEBS J; 2008 May; 275(9):2255-66. PubMed ID: 18397325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-function relationships of wheat flavone O-methyltransferase: Homology modeling and site-directed mutagenesis.
    Zhou JM; Lee E; Kanapathy-Sinnaiaha F; Park Y; Kornblatt JA; Lim Y; Ibrahim RK
    BMC Plant Biol; 2010 Jul; 10():156. PubMed ID: 20670441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential O-methylation of tricetin by a single gene product in wheat.
    Zhou JM; Gold ND; Martin VJ; Wollenweber E; Ibrahim RK
    Biochim Biophys Acta; 2006 Jul; 1760(7):1115-24. PubMed ID: 16730127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical characterization of a putative wheat caffeic acid O-methyltransferase.
    Zhou JM; Seo YW; Ibrahim RK
    Plant Physiol Biochem; 2009 Apr; 47(4):322-6. PubMed ID: 19211254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional insights into O-methyltransferase from Bacillus cereus.
    Cho JH; Park Y; Ahn JH; Lim Y; Rhee S
    J Mol Biol; 2008 Oct; 382(4):987-97. PubMed ID: 18706426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a caffeic acid 3-O-methyltransferase from wheat and its function in lignin biosynthesis.
    Ma QH; Xu Y
    Biochimie; 2008 Mar; 90(3):515-24. PubMed ID: 17976886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of two candidate flavone 8-O-methyltransferases suggests the existence of two potential routes to nevadensin in sweet basil.
    Berim A; Gang DR
    Phytochemistry; 2013 Aug; 92():33-41. PubMed ID: 23747095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function of the antibiotic resistance-mediating methyltransferase AviRb from Streptomyces viridochromogenes.
    Mosbacher TG; Bechthold A; Schulz GE
    J Mol Biol; 2005 Jan; 345(3):535-45. PubMed ID: 15581897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Serine 286 in cosubstrate binding and catalysis of a flavonol O-methyltransferase.
    Kornblatt J; Muzac I; Lim Y; Ahn JH; Ibrahim RK
    Biochem Cell Biol; 2004 Oct; 82(5):531-7. PubMed ID: 15499381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tricin biosynthesis during growth of wheat under different abiotic stresses.
    Moheb A; Agharbaoui Z; Kanapathy F; Ibrahim RK; Roy R; Sarhan F
    Plant Sci; 2013 Mar; 201-202():115-20. PubMed ID: 23352409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pathway by which the tetrameric protein transthyretin dissociates.
    Foss TR; Wiseman RL; Kelly JW
    Biochemistry; 2005 Nov; 44(47):15525-33. PubMed ID: 16300401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regiospecificity and kinetic properties of a plant natural product O-methyltransferase are determined by its N-terminal domain.
    Vogt T
    FEBS Lett; 2004 Mar; 561(1-3):159-62. PubMed ID: 15013769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Pseudomonas aeruginosa nirE gene encodes the S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferase required for heme d(1) biosynthesis.
    Storbeck S; Walther J; Müller J; Parmar V; Schiebel HM; Kemken D; Dülcks T; Warren MJ; Layer G
    FEBS J; 2009 Oct; 276(20):5973-82. PubMed ID: 19754882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regioselectivity of 7-O-methyltransferase of poplar to flavones.
    Kim BG; Kim H; Hur HG; Lim Y; Ahn JH
    J Biotechnol; 2006 Nov; 126(2):241-7. PubMed ID: 16713650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of RNA cap in the Wesselsbron virus NS5 methyltransferase domain: implications for RNA-capping mechanisms in Flavivirus.
    Bollati M; Milani M; Mastrangelo E; Ricagno S; Tedeschi G; Nonnis S; Decroly E; Selisko B; de Lamballerie X; Coutard B; Canard B; Bolognesi M
    J Mol Biol; 2009 Jan; 385(1):140-52. PubMed ID: 18976670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and structural analysis of substrate promiscuity in plant Mg2+-dependent O-methyltransferases.
    Kopycki JG; Rauh D; Chumanevich AA; Neumann P; Vogt T; Stubbs MT
    J Mol Biol; 2008 Apr; 378(1):154-64. PubMed ID: 18342334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallographic structure of phosphofructokinase-2 from Escherichia coli in complex with two ATP molecules. Implications for substrate inhibition.
    Cabrera R; Ambrosio AL; Garratt RC; Guixé V; Babul J
    J Mol Biol; 2008 Nov; 383(3):588-602. PubMed ID: 18762190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human platelet 12-lipoxygenase, new findings about its activity, membrane binding and low-resolution structure.
    Aleem AM; Jankun J; Dignam JD; Walther M; Kühn H; Svergun DI; Skrzypczak-Jankun E
    J Mol Biol; 2008 Feb; 376(1):193-209. PubMed ID: 18155727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast sterol C24-methyltransferase: role of highly conserved tyrosine-81 in catalytic competence studied by site-directed mutagenesis and thermodynamic analysis.
    Nes WD; Jayasimha P; Song Z
    Arch Biochem Biophys; 2008 Sep; 477(2):313-23. PubMed ID: 18555004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure analysis of the conserved methyltransferase domain of human trimethylguanosine synthase TGS1.
    Monecke T; Dickmanns A; Strasser A; Ficner R
    Acta Crystallogr D Biol Crystallogr; 2009 Apr; 65(Pt 4):332-8. PubMed ID: 19307714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.