These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
628 related articles for article (PubMed ID: 18397608)
1. Skeletal muscle is enriched in hematopoietic stem cells and not inflammatory cells in cachectic mice. Berardi E; Aulino P; Murfuni I; Toschi A; Padula F; Scicchitano BM; Coletti D; Adamo S Neurol Res; 2008 Mar; 30(2):160-9. PubMed ID: 18397608 [TBL] [Abstract][Full Text] [Related]
2. Molecular, cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse. Aulino P; Berardi E; Cardillo VM; Rizzuto E; Perniconi B; Ramina C; Padula F; Spugnini EP; Baldi A; Faiola F; Adamo S; Coletti D BMC Cancer; 2010 Jul; 10():363. PubMed ID: 20615237 [TBL] [Abstract][Full Text] [Related]
3. A standardized herbal combination of Astragalus membranaceus and Paeonia japonica, protects against muscle atrophy in a C26 colon cancer cachexia mouse model. Lee SB; Lee JS; Moon SO; Lee HD; Yoon YS; Son CG J Ethnopharmacol; 2021 Mar; 267():113470. PubMed ID: 33068652 [TBL] [Abstract][Full Text] [Related]
4. Role of PARP activity in lung cancer-induced cachexia: Effects on muscle oxidative stress, proteolysis, anabolic markers, and phenotype. Chacon-Cabrera A; Mateu-Jimenez M; Langohr K; Fermoselle C; García-Arumí E; Andreu AL; Yelamos J; Barreiro E J Cell Physiol; 2017 Dec; 232(12):3744-3761. PubMed ID: 28177129 [TBL] [Abstract][Full Text] [Related]
5. Activation of the SDF1/CXCR4 pathway retards muscle atrophy during cancer cachexia. Martinelli GB; Olivari D; Re Cecconi AD; Talamini L; Ottoboni L; Lecker SH; Stretch C; Baracos VE; Bathe OF; Resovi A; Giavazzi R; Cervo L; Piccirillo R Oncogene; 2016 Dec; 35(48):6212-6222. PubMed ID: 27212031 [TBL] [Abstract][Full Text] [Related]
6. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia. Fukawa T; Yan-Jiang BC; Min-Wen JC; Jun-Hao ET; Huang D; Qian CN; Ong P; Li Z; Chen S; Mak SY; Lim WJ; Kanayama HO; Mohan RE; Wang RR; Lai JH; Chua C; Ong HS; Tan KK; Ho YS; Tan IB; Teh BT; Shyh-Chang N Nat Med; 2016 Jun; 22(6):666-71. PubMed ID: 27135739 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice. Brown JL; Rosa-Caldwell ME; Lee DE; Blackwell TA; Brown LA; Perry RA; Haynie WS; Hardee JP; Carson JA; Wiggs MP; Washington TA; Greene NP J Cachexia Sarcopenia Muscle; 2017 Dec; 8(6):926-938. PubMed ID: 28845591 [TBL] [Abstract][Full Text] [Related]
8. Myogenic specification of side population cells in skeletal muscle. Asakura A; Seale P; Girgis-Gabardo A; Rudnicki MA J Cell Biol; 2002 Oct; 159(1):123-34. PubMed ID: 12379804 [TBL] [Abstract][Full Text] [Related]
9. Pantoprazole blocks the JAK2/STAT3 pathway to alleviate skeletal muscle wasting in cancer cachexia by inhibiting inflammatory response. Guo D; Wang C; Wang Q; Qiao Z; Tang H Oncotarget; 2017 Jun; 8(24):39640-39648. PubMed ID: 28489606 [TBL] [Abstract][Full Text] [Related]
10. Pharmacological strategies in lung cancer-induced cachexia: effects on muscle proteolysis, autophagy, structure, and weakness. Chacon-Cabrera A; Fermoselle C; Urtreger AJ; Mateu-Jimenez M; Diament MJ; de Kier Joffé ED; Sandri M; Barreiro E J Cell Physiol; 2014 Nov; 229(11):1660-72. PubMed ID: 24615622 [TBL] [Abstract][Full Text] [Related]
11. Amiloride ameliorates muscle wasting in cancer cachexia through inhibiting tumor-derived exosome release. Zhou L; Zhang T; Shao W; Lu R; Wang L; Liu H; Jiang B; Li S; Zhuo H; Wang S; Li Q; Huang C; Lin D Skelet Muscle; 2021 Jul; 11(1):17. PubMed ID: 34229732 [TBL] [Abstract][Full Text] [Related]
12. Interleukin-15 is able to suppress the increased DNA fragmentation associated with muscle wasting in tumour-bearing rats. Figueras M; Busquets S; Carbó N; Barreiro E; Almendro V; Argilés JM; López-Soriano FJ FEBS Lett; 2004 Jul; 569(1-3):201-6. PubMed ID: 15225634 [TBL] [Abstract][Full Text] [Related]
13. Glycine administration attenuates skeletal muscle wasting in a mouse model of cancer cachexia. Ham DJ; Murphy KT; Chee A; Lynch GS; Koopman R Clin Nutr; 2014 Jun; 33(3):448-58. PubMed ID: 23835111 [TBL] [Abstract][Full Text] [Related]
14. Evidence for cardiac atrophic remodeling in cancer-induced cachexia in mice. Tian M; Asp ML; Nishijima Y; Belury MA Int J Oncol; 2011 Nov; 39(5):1321-6. PubMed ID: 21822537 [TBL] [Abstract][Full Text] [Related]
15. Tumor inoculation site affects the development of cancer cachexia and muscle wasting. Matsuyama T; Ishikawa T; Okayama T; Oka K; Adachi S; Mizushima K; Kimura R; Okajima M; Sakai H; Sakamoto N; Katada K; Kamada K; Uchiyama K; Handa O; Takagi T; Kokura S; Naito Y; Itoh Y Int J Cancer; 2015 Dec; 137(11):2558-65. PubMed ID: 26016447 [TBL] [Abstract][Full Text] [Related]
16. Aerobic and resistance training dependent skeletal muscle plasticity in the colon-26 murine model of cancer cachexia. Khamoui AV; Park BS; Kim DH; Yeh MC; Oh SL; Elam ML; Jo E; Arjmandi BH; Salazar G; Grant SC; Contreras RJ; Lee WJ; Kim JS Metabolism; 2016 May; 65(5):685-698. PubMed ID: 27085776 [TBL] [Abstract][Full Text] [Related]
17. Reduced lung cancer burden by selective immunomodulators elicits improvements in muscle proteolysis and strength in cachectic mice. Salazar-Degracia A; Granado-Martínez P; Millán-Sánchez A; Tang J; Pons-Carreto A; Barreiro E J Cell Physiol; 2019 Aug; 234(10):18041-18052. PubMed ID: 30851071 [TBL] [Abstract][Full Text] [Related]