These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
436 related articles for article (PubMed ID: 18397783)
1. Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase. Matsushika A; Watanabe S; Kodaki T; Makino K; Sawayama S J Biosci Bioeng; 2008 Mar; 105(3):296-9. PubMed ID: 18397783 [TBL] [Abstract][Full Text] [Related]
2. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695 [TBL] [Abstract][Full Text] [Related]
3. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. Watanabe S; Saleh AA; Pack SP; Annaluru N; Kodaki T; Makino K J Biotechnol; 2007 Jun; 130(3):316-9. PubMed ID: 17555838 [TBL] [Abstract][Full Text] [Related]
4. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
5. Efficient bioethanol production from xylose by recombinant saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. Matsushika A; Sawayama S J Biosci Bioeng; 2008 Sep; 106(3):306-9. PubMed ID: 18930011 [TBL] [Abstract][Full Text] [Related]
6. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase. Khattab SM; Saimura M; Kodaki T J Biotechnol; 2013 Jun; 165(3-4):153-6. PubMed ID: 23578809 [TBL] [Abstract][Full Text] [Related]
7. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Hou J; Shen Y; Li XP; Bao XM Lett Appl Microbiol; 2007 Aug; 45(2):184-9. PubMed ID: 17651216 [TBL] [Abstract][Full Text] [Related]
8. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479 [TBL] [Abstract][Full Text] [Related]
9. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Matsushika A; Inoue H; Murakami K; Takimura O; Sawayama S Bioresour Technol; 2009 Apr; 100(8):2392-8. PubMed ID: 19128960 [TBL] [Abstract][Full Text] [Related]
10. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Karhumaa K; Fromanger R; Hahn-Hägerdal B; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2007 Jan; 73(5):1039-46. PubMed ID: 16977466 [TBL] [Abstract][Full Text] [Related]
11. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862 [TBL] [Abstract][Full Text] [Related]
12. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A; Sawayama S Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018 [TBL] [Abstract][Full Text] [Related]
13. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613 [TBL] [Abstract][Full Text] [Related]
14. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. Bera AK; Ho NW; Khan A; Sedlak M J Ind Microbiol Biotechnol; 2011 May; 38(5):617-26. PubMed ID: 20714780 [TBL] [Abstract][Full Text] [Related]
15. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
16. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Katahira S; Mizuike A; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564 [TBL] [Abstract][Full Text] [Related]
17. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. Kim SR; Kwee NR; Kim H; Jin YS FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717 [TBL] [Abstract][Full Text] [Related]
18. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Hou J; Vemuri GN; Bao X; Olsson L Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731 [TBL] [Abstract][Full Text] [Related]
19. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B J Biotechnol; 2012 Apr; 158(4):192-202. PubMed ID: 21903144 [TBL] [Abstract][Full Text] [Related]
20. Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation. Guo C; Jiang N World J Microbiol Biotechnol; 2013 Mar; 29(3):541-7. PubMed ID: 23180545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]