These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 18397816)

  • 1. An experimental study on collagen content and biomechanical properties of sclera after posterior sclera reinforcement.
    Weiyi C; Wang X; Wang C; Tao L; Li X; Zhang Q
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S17-20. PubMed ID: 18397816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical considerations: evaluating scleral reinforcement materials for pathological myopia.
    Yan Z; Wang C; Chen W; Song X
    Can J Ophthalmol; 2010 Jun; 45(3):252-5. PubMed ID: 20436547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term biomechanical properties of rabbit sclera after collagen crosslinking using riboflavin and ultraviolet A (UVA).
    Wollensak G; Iomdina E
    Acta Ophthalmol; 2009 Mar; 87(2):193-8. PubMed ID: 18803623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The biomechanical properties of sclera after posterior sclera reinforcement operation].
    Wang X; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Dec; 24(6):1260-3, 1269. PubMed ID: 18232473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term biomechanical properties after collagen crosslinking of sclera using glyceraldehyde.
    Wollensak G; Iomdina E
    Acta Ophthalmol; 2008 Dec; 86(8):887-93. PubMed ID: 18537936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The elastic modulus and collagen of sclera increase during the early growth process.
    Wang C; Xie Y; Wang G
    J Mech Behav Biomed Mater; 2018 Jan; 77():566-571. PubMed ID: 29096121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanics of the sclera in myopia: extracellular and cellular factors.
    McBrien NA; Jobling AI; Gentle A
    Optom Vis Sci; 2009 Jan; 86(1):E23-30. PubMed ID: 19104466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and ultrastructural changes to the sclera in a mammalian model of high myopia.
    McBrien NA; Cornell LM; Gentle A
    Invest Ophthalmol Vis Sci; 2001 Sep; 42(10):2179-87. PubMed ID: 11527928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of mechanical stimulation on viscoelasticity of rabbit scleral fibroblasts after posterior scleral reinforcement.
    Wang G; Chen W
    Exp Biol Med (Maywood); 2012 Oct; 237(10):1150-4. PubMed ID: 23115350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural factors that mediate scleral stiffness.
    Schultz DS; Lotz JC; Lee SM; Trinidad ML; Stewart JM
    Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4232-6. PubMed ID: 18539943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Causes of insufficient effectiveness of collagen plasty (an experimental study)].
    Sidorenko EI; Obrubov SA; Dreval' AA; Fedorova VN
    Vestn Oftalmol; 1995; 111(1):4-6. PubMed ID: 7771045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional Biomechanical properties of human sclera after cross-linking by riboflavin/ultraviolet A.
    Wang M; Zhang F; Qian X; Zhao X
    J Refract Surg; 2012 Oct; 28(10):723-8. PubMed ID: 23062003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of biochemical and biomechanical qualities of normal and myopic eye sclera in humans of different age groups.
    Avetisov ES; Savitskaya NF; Vinetskaya MI; Iomdina EN
    Metab Pediatr Syst Ophthalmol; 1983; 7(4):183-8. PubMed ID: 6678372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Scleral fortification in children at high risk of progressive myopia].
    Tarutta EP; Iomdina EN; Shamkhalova ESh; Andreeva LD; Maksimova MV
    Vestn Oftalmol; 1992; 108(2):14-7. PubMed ID: 1529483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-linking of scleral collagen in the rabbit using riboflavin and UVA.
    Wollensak G; Iomdina E; Dittert DD; Salamatina O; Stoltenburg G
    Acta Ophthalmol Scand; 2005 Aug; 83(4):477-82. PubMed ID: 16029274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytokine Expression and Biomechanical Characteristics after Posterior Scleral Reinforcement Using Demineralized Bone Matrix and Allogeneic Sclera.
    Yin Z; Jin X; Ye C; Ma J
    Altern Ther Health Med; 2024 Mar; ():. PubMed ID: 38551429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scleroplasty in progressive myopia--selection of materials.
    Novák J; Bartos F; Kubĕna K; Rehák S; Juran J; Galatík A
    Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove; 1992; 35(1):79-111. PubMed ID: 1411245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Reinforcement of the sclera with new types of synthetic materials in progressive myopia].
    Tarutta EP; Andreeva LD; Markosian GA; Iomdina EN; Lazuk AV; Kruzhkova GV
    Vestn Oftalmol; 1999; 115(5):8-10. PubMed ID: 10582010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The efficacy and safety of a novel posterior scleral reinforcement device in rabbits.
    Yuan Y; Zong Y; Zheng Q; Qian G; Qian X; Li Y; Shao W; Gao Q
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():233-41. PubMed ID: 26952419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagen crosslinking of human and porcine sclera.
    Wollensak G; Spoerl E
    J Cataract Refract Surg; 2004 Mar; 30(3):689-95. PubMed ID: 15050269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.