These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18397828)

  • 1. Synthesis and biochemical application of 2'-O-methyl-3'-thioguanosine as a probe to explore group I intron catalysis.
    Lu J; Li NS; Sengupta RN; Piccirilli JA
    Bioorg Med Chem; 2008 May; 16(10):5754-60. PubMed ID: 18397828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and incorporation of the phosphoramidite derivative of 2'-O-photocaged 3'-s-thioguanosine into oligoribonucleotides: substrate for probing the mechanism of RNA catalysis.
    Li NS; Tuttle N; Staley JP; Piccirilli JA
    J Org Chem; 2014 Apr; 79(8):3647-52. PubMed ID: 24635216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 2'-hydroxyl group of the guanosine nucleophile donates a functionally important hydrogen bond in the tetrahymena ribozyme reaction.
    Hougland JL; Sengupta RN; Dai Q; Deb SK; Piccirilli JA
    Biochemistry; 2008 Jul; 47(29):7684-94. PubMed ID: 18572927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of S6-(2,4-dinitrophenyl)-6-thioguanosine phosphoramidite and its incorporation into oligoribonucleotides.
    Zheng Q; Wang Y; Lattmann E
    Bioorg Med Chem Lett; 2003 Oct; 13(19):3141-4. PubMed ID: 12951081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaving group stabilization by metal ion coordination and hydrogen bond donation is an evolutionarily conserved feature of group I introns.
    Kuo LY; Piccirilli JA
    Biochim Biophys Acta; 2001 Dec; 1522(3):158-66. PubMed ID: 11779630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new odorless procedure for the synthesis of 2'-deoxy-6-thioguanosine and its incorporation into oligodeoxynucleotides.
    Onizuka K; Taniguchi Y; Sasaki S
    Nucleosides Nucleotides Nucleic Acids; 2009 Aug; 28(8):752-60. PubMed ID: 20183614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.
    Shan SO; Herschlag D
    Biochemistry; 1999 Aug; 38(34):10958-75. PubMed ID: 10460151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of 6-thioguanosine phosphoramidite for oligoribonucleotide synthesis.
    Wang Y; Lattmann E; Zheng Q
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1247-9. PubMed ID: 14565391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rearrangement of the guanosine-binding site establishes an extended network of functional interactions in the Tetrahymena group I ribozyme active site.
    Forconi M; Sengupta RN; Piccirilli JA; Herschlag D
    Biochemistry; 2010 Mar; 49(12):2753-62. PubMed ID: 20175542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that the guanosine substrate of the Tetrahymena ribozyme is bound in the anti conformation and that N7 contributes to binding.
    Lin CW; Hanna M; Szostak JW
    Biochemistry; 1994 Mar; 33(9):2703-7. PubMed ID: 8117735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function converge to identify a hydrogen bond in a group I ribozyme active site.
    Forconi M; Sengupta RN; Liu MC; Sartorelli AC; Piccirilli JA; Herschlag D
    Angew Chem Int Ed Engl; 2009; 48(39):7171-5. PubMed ID: 19708048
    [No Abstract]   [Full Text] [Related]  

  • 12. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site.
    Guo F; Gooding AR; Cech TR
    Mol Cell; 2004 Nov; 16(3):351-62. PubMed ID: 15525509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the cleavage site 2'-hydroxyl in the Tetrahymena group I ribozyme reaction.
    Yoshida A; Shan So; Herschlag D; Piccirilli JA
    Chem Biol; 2000 Feb; 7(2):85-96. PubMed ID: 10662698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical synthesis of oligoribonucleotides containing 2-aminopurine: substrates for the investigation of ribozyme function.
    Doudna JA; Szostak JW; Rich A; Usman N
    J Org Chem; 1990 Oct; 55(21):5547-9. PubMed ID: 11540922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of 3'-thioribonucleosides and their incorporation into oligoribonucleotides via phosphoramidite chemistry.
    Sun S; Yoshida A; Piccirilli JA
    RNA; 1997 Nov; 3(11):1352-63. PubMed ID: 9409625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved thermochemistry of guanosine nucleophile binding for structurally distinct group I ribozymes.
    Kuo LY; Cech TR
    Nucleic Acids Res; 1996 Oct; 24(19):3722-7. PubMed ID: 8871550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synthesis of oligoribonucleotides containing O6-methylguanosine: the role of conserved guanosine residues in hammerhead ribozyme cleavage.
    Grasby JA; Jonathan P; Butler G; Gait MJ
    Nucleic Acids Res; 1993 Sep; 21(19):4444-50. PubMed ID: 8233777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations at the guanosine-binding site of the Tetrahymena ribozyme also affect site-specific hydrolysis.
    Legault P; Herschlag D; Celander DW; Cech TR
    Nucleic Acids Res; 1992 Dec; 20(24):6613-9. PubMed ID: 1480482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chemical basis of adenosine conservation throughout the Tetrahymena ribozyme.
    Ortoleva-Donnelly L; Szewczak AA; Gutell RR; Strobel SA
    RNA; 1998 May; 4(5):498-519. PubMed ID: 9582093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A promiscuous ribozyme promotes nucleotide synthesis in addition to ribose chemistry.
    Lau MW; Unrau PJ
    Chem Biol; 2009 Aug; 16(8):815-25. PubMed ID: 19716472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.