These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 1839801)

  • 1. Effect of inhibition of the mitochondrial ATPase on net myocardial ATP in total ischemia.
    Jennings RB; Reimer KA; Steenbergen C
    J Mol Cell Cardiol; 1991 Dec; 23(12):1383-95. PubMed ID: 1839801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of oligomycin and acidosis on rates of ATP depletion in ischemic heart muscle.
    Rouslin W; Erickson JL; Solaro RJ
    Am J Physiol; 1986 Mar; 250(3 Pt 2):H503-8. PubMed ID: 2937313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP depletion and mitochondrial functional loss during ischemia in slow and fast heart-rate hearts.
    Rouslin W; Broge CW; Grupp IL
    Am J Physiol; 1990 Dec; 259(6 Pt 2):H1759-66. PubMed ID: 2148059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protonic inhibition of the mitochondrial oligomycin-sensitive adenosine 5'-triphosphatase in ischemic and autolyzing cardiac muscle. Possible mechanism for the mitigation of ATP hydrolysis under nonenergizing conditions.
    Rouslin W
    J Biol Chem; 1983 Aug; 258(16):9657-61. PubMed ID: 6224783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of reversible ischemia on the activity of the mitochondrial ATPase: relationship to ischemic preconditioning.
    Vander Heide RS; Hill ML; Reimer KA; Jennings RB
    J Mol Cell Cardiol; 1996 Jan; 28(1):103-12. PubMed ID: 8745218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total ischemia III: Effect of inhibition of anaerobic glycolysis.
    Jennings RB; Reimer KA; Steenbergen C; Schaper J
    J Mol Cell Cardiol; 1989 Feb; 21 Suppl 1():37-54. PubMed ID: 2733029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ischemic preconditioning on mitochondrial oxidative phosphorylation and high energy phosphates in rat hearts.
    Kobara M; Tatsumi T; Matoba S; Yamahara Y; Nakagawa C; Ohta B; Matsumoto T; Inoue D; Asayama J; Nakagawa M
    J Mol Cell Cardiol; 1996 Feb; 28(2):417-28. PubMed ID: 8729072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preconditioning in rat hearts is independent of mitochondrial F1F0 ATPase inhibition.
    Green DW; Murray HN; Sleph PG; Wang FL; Baird AJ; Rogers WL; Grover GJ
    Am J Physiol; 1998 Jan; 274(1):H90-7. PubMed ID: 9458856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of ischemic preconditioning in rat myocardium. Roles of adenosine, cellular energy state, and mitochondrial F1F0-ATPase.
    Vuorinen K; Ylitalo K; Peuhkurinen K; Raatikainen P; Ala-Rämi A; Hassinen IE
    Circulation; 1995 Jun; 91(11):2810-8. PubMed ID: 7758188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting the loss of mitochondrial function during zero-flow ischemia (autolysis) in slow and fast heart-rate hearts.
    Rouslin W
    J Mol Cell Cardiol; 1988 Nov; 20(11):999-1007. PubMed ID: 2976846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-induced inhibition of mitochondrial ATPase by oligomycin.
    Drobinskaya IE; Kozlov IA; Skulachev VP
    FEBS Lett; 1978 Dec; 96(1):111-4. PubMed ID: 153239
    [No Abstract]   [Full Text] [Related]  

  • 12. Reversible ischemic inhibition of F(1)F(0)-ATPase in rat and human myocardium.
    Ylitalo K; Ala-Rämi A; Vuorinen K; Peuhkurinen K; Lepojärvi M; Kaukoranta P; Kiviluoma K; Hassinen I
    Biochim Biophys Acta; 2001 Apr; 1504(2-3):329-39. PubMed ID: 11245796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myocardial acidosis and the mitigation of tissue ATP depletion in ischemic cardiac muscle: the role of the mitochondrial ATPase.
    Rouslin W
    Adv Exp Med Biol; 1986; 194():355-73. PubMed ID: 2944359
    [No Abstract]   [Full Text] [Related]  

  • 14. Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury.
    Imahashi K; Schneider MD; Steenbergen C; Murphy E
    Circ Res; 2004 Oct; 95(7):734-41. PubMed ID: 15345651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High energy phosphates, anaerobic glycolysis and irreversibility in ischemia.
    Jennings RB; Reimer KA; Jones RN; Peyton RB
    Adv Exp Med Biol; 1983; 161():403-19. PubMed ID: 6869079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between the bovine heart mitochondrial adenosine triphosphatase, lipophilic compounds, and oligomycin.
    Cunningham CC; George DT
    J Biol Chem; 1975 Mar; 250(6):2036-44. PubMed ID: 123247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstituted mitochondrial oligomycin-sensitive ATPase (F0F1) with intermediate Pi in equilibrium HOH exchange but no Pi in equilibrium ATP exchange activity.
    Ernster L; Carlsson C; Boyer PD
    FEBS Lett; 1977 Dec; 84(2):283-6. PubMed ID: 145953
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of dinitrophenol and oligomycin on the coupling between anaerobic metabolism and anaerobic sodium transport by the isolated turtle bladder.
    Bricker NS; Klahr S
    J Gen Physiol; 1966 Jan; 49(3):483-99. PubMed ID: 4223050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic glycolysis and the development of ischaemic contracture in isolated rat heart.
    Lipasti JA; Nevalainen TJ; Alanen KA; Tolvanen MA
    Cardiovasc Res; 1984 Mar; 18(3):145-8. PubMed ID: 6705006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial cholesterol content and membrane properties in porcine myocardial ischemia.
    Rouslin W; MacGee J; Gupte S; Wesselman A; Epps DE
    Am J Physiol; 1982 Feb; 242(2):H254-9. PubMed ID: 6461257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.