BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 18398680)

  • 1. The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms.
    Vande Geest JP; Schmidt DE; Sacks MS; Vorp DA
    Ann Biomed Eng; 2008 Jun; 36(6):921-32. PubMed ID: 18398680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of material model formulation in the stress analysis of abdominal aortic aneurysms.
    Rodríguez JF; Martufi G; Doblaré M; Finol EA
    Ann Biomed Eng; 2009 Nov; 37(11):2218-21. PubMed ID: 19657744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk.
    Fillinger MF; Raghavan ML; Marra SP; Cronenwett JL; Kennedy FE
    J Vasc Surg; 2002 Sep; 36(3):589-97. PubMed ID: 12218986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness.
    Scotti CM; Shkolnik AD; Muluk SC; Finol EA
    Biomed Eng Online; 2005 Nov; 4():64. PubMed ID: 16271141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model.
    Rissland P; Alemu Y; Einav S; Ricotta J; Bluestein D
    J Biomech Eng; 2009 Mar; 131(3):031001. PubMed ID: 19154060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions.
    Finol EA; Keyhani K; Amon CH
    J Biomech Eng; 2003 Apr; 125(2):207-17. PubMed ID: 12751282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture.
    Boyd AJ; Kuhn DC; Lozowy RJ; Kulbisky GP
    J Vasc Surg; 2016 Jun; 63(6):1613-9. PubMed ID: 25752691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis in asymptomatic, symptomatic, and ruptured abdominal aortic aneurysms: in search of new rupture risk predictors.
    Erhart P; Hyhlik-Dürr A; Geisbüsch P; Kotelis D; Müller-Eschner M; Gasser TC; von Tengg-Kobligk H; Böckler D
    Eur J Vasc Endovasc Surg; 2015 Mar; 49(3):239-45. PubMed ID: 25542592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple method of estimating the stress acting on a bilaterally symmetric abdominal aortic aneurysm.
    Yamada H; Hasegawa Y
    Comput Methods Biomech Biomed Engin; 2007 Feb; 10(1):53-61. PubMed ID: 18651271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aortic Lumen Area Is Increased in Ruptured Abdominal Aortic Aneurysms and Correlates to Biomechanical Rupture Risk.
    Siika A; Lindquist Liljeqvist M; Hultgren R; Gasser TC; Roy J
    J Endovasc Ther; 2018 Dec; 25(6):750-756. PubMed ID: 30354931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms.
    Speelman L; Bohra A; Bosboom EM; Schurink GW; van de Vosse FN; Makaorun MS; Vorp DA
    J Biomech Eng; 2007 Feb; 129(1):105-9. PubMed ID: 17227104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Rupture Sites in Abdominal Aortic Aneurysms After Finite Element Analysis.
    Erhart P; Roy J; de Vries JP; Liljeqvist ML; Grond-Ginsbach C; Hyhlik-Dürr A; Böckler D
    J Endovasc Ther; 2016 Feb; 23(1):115-20. PubMed ID: 26496955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy.
    Rodríguez JF; Ruiz C; Doblaré M; Holzapfel GA
    J Biomech Eng; 2008 Apr; 130(2):021023. PubMed ID: 18412510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction.
    Scotti CM; Jimenez J; Muluk SC; Finol EA
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):301-22. PubMed ID: 18568827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of intraluminal thrombus on abdominal aortic aneurysm wall stress.
    Georgakarakos E; Ioannou CV; Volanis S; Papaharilaou Y; Ekaterinaris J; Katsamouris AN
    Int Angiol; 2009 Aug; 28(4):325-33. PubMed ID: 19648877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progression of abdominal aortic aneurysm towards rupture: refining clinical risk assessment using a fully coupled fluid-structure interaction method.
    Xenos M; Labropoulos N; Rambhia S; Alemu Y; Einav S; Tassiopoulos A; Sakalihasan N; Bluestein D
    Ann Biomed Eng; 2015 Jan; 43(1):139-53. PubMed ID: 25527320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical identification of the rupture locations in patient-specific abdominal aortic aneurysmsusing hemodynamic parameters.
    Qiu Y; Yuan D; Wen J; Fan Y; Zheng T
    Comput Methods Biomech Biomed Engin; 2018 Jan; 21(1):1-12. PubMed ID: 29251991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow-induced wall shear stress in abdominal aortic aneurysms: Part I--steady flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):309-18. PubMed ID: 12186710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm - FSI modelling.
    Bluestein D; Dumont K; De Beule M; Ricotta J; Impellizzeri P; Verhegghe B; Verdonck P
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):73-81. PubMed ID: 18651282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of modelling techniques for computing wall stress in abdominal aortic aneurysms.
    Doyle BJ; Callanan A; McGloughlin TM
    Biomed Eng Online; 2007 Oct; 6():38. PubMed ID: 17949494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.