BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 18398873)

  • 1. Exploring sequence space: profile analysis and protein-ligand docking to screen omega-aminotransferases with expanded substrate specificity.
    Seo JH; Park HY; Kim J; Lee BS; Kim BG
    Biotechnol J; 2008 May; 3(5):676-86. PubMed ID: 18398873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of (R)-selective ω-aminotransferases by exploring evolutionary sequence space.
    Kim EM; Park JH; Kim BG; Seo JH
    Enzyme Microb Technol; 2018 Mar; 110():46-52. PubMed ID: 29310855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redesigning the substrate specificity of omega-aminotransferase for the kinetic resolution of aliphatic chiral amines.
    Cho BK; Park HY; Seo JH; Kim J; Kang TJ; Lee BS; Kim BG
    Biotechnol Bioeng; 2008 Feb; 99(2):275-84. PubMed ID: 17680656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Necessary and sufficient conditions for the asymmetric synthesis of chiral amines using ω-aminotransferases.
    Seo JH; Kyung D; Joo K; Lee J; Kim BG
    Biotechnol Bioeng; 2011 Feb; 108(2):253-63. PubMed ID: 20824676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel at the library.
    Yaffe MB
    Nat Methods; 2004 Oct; 1(1):13-4. PubMed ID: 15782146
    [No Abstract]   [Full Text] [Related]  

  • 6. Aminotransferases: demonstration of homology and division into evolutionary subgroups.
    Mehta PK; Hale TI; Christen P
    Eur J Biochem; 1993 Jun; 214(2):549-61. PubMed ID: 8513804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular determinants for substrate selectivity of ω-transaminases.
    Park ES; Kim M; Shin JS
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2425-35. PubMed ID: 21983703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting hepatitis C virus protease cleavage sites using generalized linear indicator regression models.
    Yang ZR
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):2119-23. PubMed ID: 17019878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical characterization, homology modeling and docking studies of ornithine delta-aminotransferase--an important enzyme in proline biosynthesis of plants.
    Sekhar PN; Amrutha RN; Sangam S; Verma DP; Kishor PB
    J Mol Graph Model; 2007 Nov; 26(4):709-19. PubMed ID: 17604199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational selection, identification and structural analysis of ω-aminotransferases with various substrate specificities from the genome sequence of Mesorhizobium loti MAFF303099.
    Seo JH; Hwang JY; Seo SH; Kang H; Hwang BY; Kim BG
    Biosci Biotechnol Biochem; 2012; 76(7):1308-14. PubMed ID: 22785472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cognate ligand domain mapping for enzymes.
    Bashton M; Nobeli I; Thornton JM
    J Mol Biol; 2006 Dec; 364(4):836-52. PubMed ID: 17034815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient functional clustering of protein sequences using the Dirichlet process.
    Brown DP
    Bioinformatics; 2008 Aug; 24(16):1765-71. PubMed ID: 18511467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A subfamily of PLP-dependent enzymes specialized in handling terminal amines.
    Schiroli D; Peracchi A
    Biochim Biophys Acta; 2015 Sep; 1854(9):1200-11. PubMed ID: 25770684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of an archaeal alanine:glyoxylate aminotransferase.
    Sakuraba H; Yoneda K; Takeuchi K; Tsuge H; Katunuma N; Ohshima T
    Acta Crystallogr D Biol Crystallogr; 2008 Jun; 64(Pt 6):696-9. PubMed ID: 18560158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the structural basis of substrate recognition by histidinol-phosphate aminotransferase from Corynebacterium glutamicum.
    Marienhagen J; Sandalova T; Sahm H; Eggeling L; Schneider G
    Acta Crystallogr D Biol Crystallogr; 2008 Jun; 64(Pt 6):675-85. PubMed ID: 18560156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductometric method for the rapid characterization of the substrate specificity of amine-transaminases.
    Schätzle S; Höhne M; Robins K; Bornscheuer UT
    Anal Chem; 2010 Mar; 82(5):2082-6. PubMed ID: 20148590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting multiple ligand binding modes using self-consistent pharmacophore hypotheses.
    Wallach I; Lilien R
    J Chem Inf Model; 2009 Sep; 49(9):2116-28. PubMed ID: 19711952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteases' prime targets revealed.
    Diamond SL; Greenbaum D
    Nat Biotechnol; 2008 Jun; 26(6):652-3. PubMed ID: 18536687
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.