These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 18398890)

  • 1. Dynamics of the size distribution of CdTe quantum dot ensembles during growth in liquid and crystalline phases.
    Piepenbrock MO; Stirner T; O'Neill M; Kelly SM
    Chemphyschem; 2008 May; 9(7):1057-61. PubMed ID: 18398890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth dynamics of CdTe nanoparticles in liquid and crystalline phases.
    Piepenbrock MO; Stirner T; O'Neill M; Kelly SM
    J Am Chem Soc; 2007 Jun; 129(24):7674-9. PubMed ID: 17530756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volatile interface of biological oxidant and luminescent CdTe quantum dots: implications in nanodiagnostics.
    Priyam A; Bhattacharya SC; Saha A
    Phys Chem Chem Phys; 2009 Jan; 11(3):520-7. PubMed ID: 19283269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of highly luminescent CdTe/CdS core/shell quantum dots.
    Wang J; Long Y; Zhang Y; Zhong X; Zhu L
    Chemphyschem; 2009 Mar; 10(4):680-5. PubMed ID: 19137566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitized chemiluminescence of CdTe quantum-dots on Ce(IV)-sulfite and its analytical applications.
    Sun C; Liu B; Li J
    Talanta; 2008 Apr; 75(2):447-54. PubMed ID: 18371905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-state-mediated charge-transfer dynamics in CdTe/CdSe core-shell quantum dots.
    Rawalekar S; Kaniyankandy S; Verma S; Ghosh HN
    Chemphyschem; 2011 Jun; 12(9):1729-35. PubMed ID: 21567706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid and facile method for hydrothermal synthesis of CdTe nanocrystals under mild conditions.
    Yang R; Yan Y; Mu Y; Ji W; Li X; Zou M; Fei Q; Jin Q
    J Nanosci Nanotechnol; 2006 Jan; 6(1):215-20. PubMed ID: 16573098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative examination of the stability of semiconductor quantum dots in various biochemical buffers.
    Boldt K; Bruns OT; Gaponik N; Eychmüller A
    J Phys Chem B; 2006 Feb; 110(5):1959-63. PubMed ID: 16471768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of CdTe quantum dots as temperature-insensitive bioprobes.
    Wang JH; Wang HQ; Li YQ; Zhang HL; Li XQ; Hua XF; Cao YC; Huang ZL; Zhao YD
    Talanta; 2008 Jan; 74(4):724-9. PubMed ID: 18371700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical etching with tetrafluoroborate: a facile method for resizing of CdTe nanocrystals under mild conditions.
    Liu J; Yang X; Wang K; Wang D; Zhang P
    Chem Commun (Camb); 2009 Oct; (40):6080-2. PubMed ID: 19809650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation and activity dependent interaction of glucose oxidase with CdTe quantum dots: towards developing a nanoparticle based enzymatic assay.
    Priyam A; Chatterjee A; Bhattacharya SC; Saha A
    Photochem Photobiol Sci; 2009 Mar; 8(3):362-70. PubMed ID: 19255677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-dependent temperature sensitivity of photoluminescence peak position of CdTe quantum dots.
    Vyhnan N; Khalavka Y
    Luminescence; 2014 Nov; 29(7):952-4. PubMed ID: 24123534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Type-I and type-II nanoscale heterostructures based on CdTe nanocrystals: a comparative study.
    Dorfs D; Franzl T; Osovsky R; Brumer M; Lifshitz E; Klar TA; Eychmüller A
    Small; 2008 Aug; 4(8):1148-52. PubMed ID: 18666165
    [No Abstract]   [Full Text] [Related]  

  • 14. Luminescence temperature antiquenching of water-soluble CdTe quantum dots: role of the solvent.
    Wuister SF; de Mello Donegá C; Meijerink A
    J Am Chem Soc; 2004 Aug; 126(33):10397-402. PubMed ID: 15315455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ observation of heterogeneous growth of CdSe quantum dots: effect of indium doping on the growth kinetics.
    Tuinenga C; Jasinski J; Iwamoto T; Chikan V
    ACS Nano; 2008 Jul; 2(7):1411-21. PubMed ID: 19206309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of reaction media on the growth and photoluminescence of colloidal CdSe nanocrystals.
    Yu K; Singh S; Patrito N; Chu V
    Langmuir; 2004 Dec; 20(25):11161-8. PubMed ID: 15568871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency.
    Barkhouse DA; Pattantyus-Abraham AG; Levina L; Sargent EH
    ACS Nano; 2008 Nov; 2(11):2356-62. PubMed ID: 19206403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoassisted tuning of silicon nanocrystal photoluminescence.
    Choi J; Wang NS; Reipa V
    Langmuir; 2007 Mar; 23(6):3388-94. PubMed ID: 17295527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and photoluminescence of ZnS quantum dots.
    Wang YH; Chen Z; Zhou XQ
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1312-5. PubMed ID: 18468145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-rate unidirectional energy transfer in directly assembled CdTe nanocrystal bilayers.
    Franzl T; Shavel A; Rogach AL; Gaponik N; Klar TA; Eychmüller A; Feldmann J
    Small; 2005 Apr; 1(4):392-5. PubMed ID: 17193460
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.