These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 18399069)

  • 1. Transitive closure and metric inequality of weighted graphs: detecting protein interaction modules using cliques.
    Ding C; He X; Xiong H; Peng H; Holbrook SR
    Int J Data Min Bioinform; 2006; 1(2):162-77. PubMed ID: 18399069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. k-Partite cliques of protein interactions: A novel subgraph topology for functional coherence analysis on PPI networks.
    Liu Q; Chen YP; Li J
    J Theor Biol; 2014 Jan; 340():146-54. PubMed ID: 24056214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel protein complex identification algorithm based on Connected Affinity Clique Extension (CACE).
    Li P; He T; Hu X; Zhao J; Shen X; Zhang M; Wang Y
    IEEE Trans Nanobioscience; 2014 Jun; 13(2):89-96. PubMed ID: 24803142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Markov clustering versus affinity propagation for the partitioning of protein interaction graphs.
    Vlasblom J; Wodak SJ
    BMC Bioinformatics; 2009 Mar; 10():99. PubMed ID: 19331680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks.
    Wang J; Li M; Chen J; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(3):607-20. PubMed ID: 20733244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CeFunMO: A centrality based method for discovering functional motifs with application in biological networks.
    Kouhsar M; Razaghi-Moghadam Z; Mousavian Z; Masoudi-Nejad A
    Comput Biol Med; 2016 Sep; 76():154-9. PubMed ID: 27454243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods.
    Dimitrakopoulos C; Theofilatos K; Pegkas A; Likothanassis S; Mavroudi S
    Artif Intell Med; 2016 Jul; 71():62-9. PubMed ID: 27506132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing biological modules via graph summarization.
    Navlakha S; Schatz MC; Kingsford C
    J Comput Biol; 2009 Feb; 16(2):253-64. PubMed ID: 19183002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining functional and topological properties to identify core modules in protein interaction networks.
    Lubovac Z; Gamalielsson J; Olsson B
    Proteins; 2006 Sep; 64(4):948-59. PubMed ID: 16794996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of functional modules in a PPI network by clique percolation clustering.
    Zhang S; Ning X; Zhang XS
    Comput Biol Chem; 2006 Dec; 30(6):445-51. PubMed ID: 17098476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying protein complexes in protein-protein interaction networks by using clique seeds and graph entropy.
    Chen B; Shi J; Zhang S; Wu FX
    Proteomics; 2013 Jan; 13(2):269-77. PubMed ID: 23112006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CAMWI: Detecting protein complexes using weighted clustering coefficient and weighted density.
    Lakizadeh A; Jalili S; Marashi SA
    Comput Biol Chem; 2015 Oct; 58():231-40. PubMed ID: 26319550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey: Enhancing protein complex prediction in PPI networks with GO similarity weighting.
    Price T; Peña FI; Cho YR
    Interdiscip Sci; 2013 Sep; 5(3):196-210. PubMed ID: 24307411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting Protein Complexes Based on Uncertain Graph Model.
    Zhao B; Wang J; Li M; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(3):486-97. PubMed ID: 26356017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction graph mining for protein complexes using local clique merging.
    Li XL; Tan SH; Foo CS; Ng SK
    Genome Inform; 2005; 16(2):260-9. PubMed ID: 16901108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mining Dense Overlapping Subgraphs in weighted protein-protein interaction networks.
    Lee AJ; Lin MC; Hsu CM
    Biosystems; 2011 Mar; 103(3):392-9. PubMed ID: 21095218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting functional modules in the yeast protein-protein interaction network.
    Chen J; Yuan B
    Bioinformatics; 2006 Sep; 22(18):2283-90. PubMed ID: 16837529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of essential proteins based on edge features and the fusion of multiple-source biological information.
    Liu P; Liu C; Mao Y; Guo J; Liu F; Cai W; Zhao F
    BMC Bioinformatics; 2023 May; 24(1):203. PubMed ID: 37198530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K; Pavlopoulou N; Papasavvas C; Likothanassis S; Dimitrakopoulos C; Georgopoulos E; Moschopoulos C; Mavroudi S
    Artif Intell Med; 2015 Mar; 63(3):181-9. PubMed ID: 25765008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of human protein complexes from local sub-graphs of protein-protein interaction network based on random forest with topological structure features.
    Li ZC; Lai YH; Chen LL; Zhou X; Dai Z; Zou XY
    Anal Chim Acta; 2012 Mar; 718():32-41. PubMed ID: 22305895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.