These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 183992)

  • 1. Acetylcholine and its metabolic enzymes in developing antennae of the moth, Manduca sexta.
    Sanes JR; Hildebrand JG
    Dev Biol; 1976 Aug; 52(1):105-20. PubMed ID: 183992
    [No Abstract]   [Full Text] [Related]  

  • 2. Cholinergic neurochemical development of normal and deafferented antennal lobes during metamorphosis of the moth, Manduca sexta.
    Sanes JR; Prescott DJ; Hildebrand JG
    Brain Res; 1977 Jan; 119(2):389-402. PubMed ID: 830392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical and developmental studies of acetylcholine metabolism in the central nervous system of the moth Manduca sexta.
    Prescott DJ; Hildebrand JG; Sanes JR; Jewett S
    Comp Biochem Physiol C Comp Pharmacol; 1977; 56(2):77-84. PubMed ID: 15782
    [No Abstract]   [Full Text] [Related]  

  • 4. Structure and development of antennae in a moth, Manduca sexta.
    Sanes JR; Hildebrand JG
    Dev Biol; 1976 Jul; 51(2):280-99. PubMed ID: 955260
    [No Abstract]   [Full Text] [Related]  

  • 5. Differentiation of insect sensory neurons in the absence of their normal synaptic targets.
    Sanes JR; Hildebrand JG; Prescott DJ
    Dev Biol; 1976 Aug; 52(1):121-7. PubMed ID: 183993
    [No Abstract]   [Full Text] [Related]  

  • 6. Immunocytochemical localization of choline acetyltransferase and muscarinic ACh receptors in the antenna during development of the sphinx moth Manduca sexta.
    Clark J; Meisner S; Torkkeli PH
    Cell Tissue Res; 2005 Apr; 320(1):163-73. PubMed ID: 15719247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Choline acetyltransferase and carnitine acetyltransferase in the placenta of the mouse.
    Welsch F; McCarthy SK
    Comp Biochem Physiol C Comp Pharmacol; 1977; 56(2):163-9. PubMed ID: 15776
    [No Abstract]   [Full Text] [Related]  

  • 8. Acetylcholinesterase, choline acetyltransferase, and the postulated acetylcholine receptor of canine platelets.
    Chuang HY; Mahammad SF; Mason RG
    Biochem Pharmacol; 1976 Sep; 25(17):1971-7. PubMed ID: 985535
    [No Abstract]   [Full Text] [Related]  

  • 9. Special chemistry of the basal ganglia 2. Distribution of acetylcholine, choline acetyltransferase and acetylcholinesterase.
    Lloyd KG
    Pharmacol Ther B; 1975; 1(1):63-77. PubMed ID: 817321
    [No Abstract]   [Full Text] [Related]  

  • 10. The effects of nerve transection in walking legs of lobster on acetylcholine, acetylcholinesterase, choline acetyltransferase, adenosine triphosphatase and protein composition.
    Welsch F; Dettbarn WD; Landon EJ
    Comp Biochem Physiol A Comp Physiol; 1974 Mar; 47(3):943-57. PubMed ID: 4156264
    [No Abstract]   [Full Text] [Related]  

  • 11. Characterization of enzymatic acetylcholine synthesis by mouse brain, rat sperm, and purified carnitine acetyltransferase.
    Goodman DR; Harbison RD
    Biochem Pharmacol; 1981 Jun; 30(12):1521-8. PubMed ID: 7271845
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of acute and chronic treatment with dichlorvos on rat brain cholinergic parameters.
    Teichert K; Szymczyk T; Consolo S; Ladinsky H
    Toxicol Appl Pharmacol; 1976 Jan; 35(1):77-81. PubMed ID: 1258061
    [No Abstract]   [Full Text] [Related]  

  • 13. Retinal cholinergic system: characterization of rat retinal acetyltransferases using specific inhibitors of choline- and carnitine-acetyltransferases.
    Sastry BV; Janson VE
    J Ocul Pharmacol; 1994; 10(1):203-15. PubMed ID: 8207327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between changes in the content of acetylcholine and the activities of acetylcholinesterase and choline acetyltransferase in the hippocampus of the rat after septal lesions.
    Oderfeld-Nowak B; Potempska A
    Acta Neurobiol Exp (Wars); 1977; 37(3):137-49. PubMed ID: 899888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equilibrium constants of the reactions of choline acetyltransferase, carnitine acetyltransferase, and acetylcholinesterase under physiological conditions.
    Pieklik JR; Guynn RW
    J Biol Chem; 1975 Jun; 250(12):4445-50. PubMed ID: 237900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased activity of choline acetyltransferase and acetylcholinesterase in developing cultures of chick spinal cord: a correlation with morphological development.
    Kim SU; Oh TH; Johnson DD
    Neurobiology; 1975 May; 5(2):119-27. PubMed ID: 1134618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin and morphogenesis of sensory neurons in an insect antenna.
    Sanes JR; Hildebrand JG
    Dev Biol; 1976 Jul; 51(2):300-19. PubMed ID: 955261
    [No Abstract]   [Full Text] [Related]  

  • 18. Regional changes in rat brain choline acetyltransferase and acetylcholinesterase activity resulting from undernutrition imposed during different periods of development.
    Eckhert CD; Barnes RH; Levitsky DA
    J Neurochem; 1976 Jul; 27(1):277-83. PubMed ID: 956832
    [No Abstract]   [Full Text] [Related]  

  • 19. Alterations of acetylcholine enzymes in neuroblastoma cells persistently infected with lymphocytic choriomeningitis virus.
    Oldstone MB; Holmstoen J; Welsh RM
    J Cell Physiol; 1977 Jun; 91(3):459-72. PubMed ID: 193868
    [No Abstract]   [Full Text] [Related]  

  • 20. Acetylcholine system in the isolated ventral and dorsal horn neurons from bovine spinal cord.
    Takahashi Y; Kushiya E; Araki K; Wakabayashi M; Hoshiyama M
    Neurosci Lett; 1980 Jul; 18(3):261-6. PubMed ID: 7052497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.