These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 183994)
1. Cellular energy metabolism during fetal development. VI. Fatty acid oxidation by developing brain. Warshaw JB; Terry ML Dev Biol; 1976 Aug; 52(1):161-6. PubMed ID: 183994 [No Abstract] [Full Text] [Related]
2. Studies of fatty acid oxidation in homogenates of the cardiomyopathic hamster. Barakat H; Brown W; Henry SD Life Sci; 1978 Oct; 23(17-18):1835-40. PubMed ID: 214654 [No Abstract] [Full Text] [Related]
3. Changes in the activities of the enzymes of hepatic fatty acid oxidation during development of the rat. Foster PC; Bailey E Biochem J; 1976 Jan; 154(1):49-56. PubMed ID: 6020 [TBL] [Abstract][Full Text] [Related]
5. Cellular energy metabolism during fetal development. IV. Fatty acid activation, acyl transfer and fatty acid oxidation during development of the chick and rat. Warshaw JB Dev Biol; 1972 Aug; 28(4):537-44. PubMed ID: 5049524 [No Abstract] [Full Text] [Related]
6. Dietary lipid and postnatal development. II. Palmityl coenzyme A oxidation in heart and liver. Aprille JR Pediatr Res; 1976 Dec; 10(12):982-5. PubMed ID: 186752 [TBL] [Abstract][Full Text] [Related]
7. The role of carnitine in intracellular metabolism. Bremer J J Clin Chem Clin Biochem; 1990 May; 28(5):297-301. PubMed ID: 2199593 [TBL] [Abstract][Full Text] [Related]
8. Control of hepatic glyceride synthesis. Hems DA Proc Nutr Soc; 1975 Dec; 34(3):225-31. PubMed ID: 1108028 [No Abstract] [Full Text] [Related]
9. Role of carnitine in fatty acid metabolism of normal and ischemic myocardium. Opie LH Am Heart J; 1979 Mar; 97(3):375-88. PubMed ID: 420080 [No Abstract] [Full Text] [Related]
10. The role of acyltransferases in fatty acid utilization. Borrebaek B; Christiansen R; Christophersen BO; Bremer J Circ Res; 1976 May; 38(5 Suppl 1):I16-21. PubMed ID: 1269090 [TBL] [Abstract][Full Text] [Related]
11. Molecular cloning and expression of human carnitine octanoyltransferase: evidence for its role in the peroxisomal beta-oxidation of branched-chain fatty acids. Ferdinandusse S; Mulders J; IJlst L; Denis S; Dacremont G; Waterham HR; Wanders RJ Biochem Biophys Res Commun; 1999 Sep; 263(1):213-8. PubMed ID: 10486279 [TBL] [Abstract][Full Text] [Related]
12. Subcellular fractionation studies on the organization of fatty acid oxidation by liver peroxisomes. Leighton F; Brandan E; Lazo O; Bronfman M Ann N Y Acad Sci; 1982; 386():62-80. PubMed ID: 6953853 [No Abstract] [Full Text] [Related]
13. Peroxisomal and mitochondrial beta-oxidation of monocarboxylyl-CoA, omega-hydroxymonocarboxylyl-CoA and dicarboxylyl-CoA esters in tissues from untreated and clofibrate-treated rats. Vamecq J; Draye JP J Biochem; 1989 Aug; 106(2):216-22. PubMed ID: 2808318 [TBL] [Abstract][Full Text] [Related]
14. [Carnitine: its role and its action in disease]. Pande SV Union Med Can; 1977 Apr; 106(4):538-42. PubMed ID: 324069 [No Abstract] [Full Text] [Related]
15. Possible functions of short-chain and medium-chain carnitine acyltransferases. Bieber LL; Emaus R; Valkner K; Farrell S Fed Proc; 1982 Oct; 41(12):2858-62. PubMed ID: 7128832 [TBL] [Abstract][Full Text] [Related]
16. Developmental changes in the characteristics of peroxisomal fatty acid oxidation system in rat liver. Horie S; Ishii H; Suga T Life Sci; 1981 Oct; 29(16):1649-56. PubMed ID: 7311711 [No Abstract] [Full Text] [Related]