BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 18399429)

  • 1. A rapid microbiotest for determination of soil toxicity to higher plants.
    Persoone G
    Commun Agric Appl Biol Sci; 2007; 72(2):97. PubMed ID: 18399429
    [No Abstract]   [Full Text] [Related]  

  • 2. Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons.
    Lipińska A; Wyszkowska J; Kucharski J
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18519-30. PubMed ID: 26341339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the effects of soil PAH accumulation by a battery of ecotoxicological tests.
    Manzo S; De Nicola F; De Luca Picione F; Maisto G; Alfani A
    Chemosphere; 2008 May; 71(10):1937-44. PubMed ID: 18336862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the Phytotoxkit microbiotest and chemical variables for toxicity evaluation of sediments.
    Czerniawska-Kusza I; Ciesielczuk T; Kusza G; Cichoń A
    Environ Toxicol; 2006 Aug; 21(4):367-72. PubMed ID: 16841321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytotoxkit/Phytotestkit and Microtox® as tools for toxicity assessment of sediments.
    Baran A; Tarnawski M
    Ecotoxicol Environ Saf; 2013 Dec; 98():19-27. PubMed ID: 24210349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of wastewater effluent quality in Thessaly region, Greece, for determining its irrigation reuse potential.
    Bakopoulou S; Emmanouil C; Kungolos A
    Ecotoxicol Environ Saf; 2011 Feb; 74(2):188-94. PubMed ID: 20719387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential for Phytoremediation of PCDD/PCDF-Contaminated Sludge and Sediments Using Cucurbitaceae Plants: A Pilot Study.
    Urbaniak M; Wyrwicka A; Zieliński M; Mankiewicz-Boczek J
    Bull Environ Contam Toxicol; 2016 Sep; 97(3):401-6. PubMed ID: 27365136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the phytotoxicity of seaport sediments in the framework of a quarry-deposit scenario: germination tests of sediments aged artificially by column leaching.
    Bedell JP; Bazin C; Sarrazin B; Perrodin Y
    Arch Environ Contam Toxicol; 2013 Jul; 65(1):1-13. PubMed ID: 23456254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of cadmium and assessment of phytotoxicity after electrokinetic remediation.
    Giannis A; Gidarakos E; Skouta A
    J Environ Manage; 2008 Feb; 86(3):535-44. PubMed ID: 17331637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of sewage sludge toxicity to plants and invertebrates in three different soils.
    Oleszczuk P; Hollert H
    Chemosphere; 2011 Apr; 83(4):502-9. PubMed ID: 21236465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of bioassays by testing whole soil and their water extract from contaminated sites.
    Leitgib L; Kálmán J; Gruiz K
    Chemosphere; 2007 Jan; 66(3):428-34. PubMed ID: 16860849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suitability of the OCDE tests to estimate contamination with 2,4-dichlorophenol of soils from Galicia (NW Spain).
    Moscoso F; Bouzas S; Gil-Sotres F; Leirós MA; Trasar-Cepeda C
    Sci Total Environ; 2007 May; 378(1-2):58-62. PubMed ID: 17306860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytotoxicity of ionic, micro- and nano-sized iron in three plant species.
    Libralato G; Costa Devoti A; Zanella M; Sabbioni E; Mičetić I; Manodori L; Pigozzo A; Manenti S; Groppi F; Volpi Ghirardini A
    Ecotoxicol Environ Saf; 2016 Jan; 123():81-8. PubMed ID: 26232851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental toxicity testing of contaminated soil based on microcalorimetry.
    Gruiz K; Feigl V; Hajdu C; Tolner M
    Environ Toxicol; 2010 Oct; 25(5):479-86. PubMed ID: 20549622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil quality in the Lomellina area using in vitro models and ecotoxicological assays.
    Baderna D; Colombo A; Romeo M; Cambria F; Teoldi F; Lodi M; Diomede L; Benfenati E
    Environ Res; 2014 Aug; 133():220-31. PubMed ID: 24968084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of soil type and environmental conditions on ZnO, TiO(2) and Ni nanoparticles phytotoxicity.
    Jośko I; Oleszczuk P
    Chemosphere; 2013 Jun; 92(1):91-9. PubMed ID: 23541360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunneling.
    Baderna D; Lomazzi E; Passoni A; Pogliaghi A; Petoumenou MI; Bagnati R; Lodi M; Viarengo A; Sforzini S; Benfenati E; Fanelli R
    J Hazard Mater; 2015 Oct; 296():210-220. PubMed ID: 25917697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the potential phytotoxicity of digestate from winery wastes.
    Da Ros C; Libralato G; Ghirardini AV; Radaelli M; Cavinato C
    Ecotoxicol Environ Saf; 2018 Apr; 150():26-33. PubMed ID: 29268111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EDTA and urease effects on Hg accumulation by Lepidium sativum.
    Smolińska B; Cedzyńska K
    Chemosphere; 2007 Nov; 69(9):1388-95. PubMed ID: 17574649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of soil biological activity after a diesel fuel spill.
    Serrano A; Tejada M; Gallego M; Gonzalez JL
    Sci Total Environ; 2009 Jun; 407(13):4056-61. PubMed ID: 19395000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.