BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 18399500)

  • 1. Root vs pod infection by root-knot nematodes on aflatoxin contamination of peanut.
    Timper P; Holbrook C; Wilson D
    Commun Agric Appl Biol Sci; 2007; 72(3):655-8. PubMed ID: 18399500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between Meloidogyne arenaria and Aflatoxin Contamination in Peanut.
    Timper P; Wilson DM; Holbrook CC; Maw BW
    J Nematol; 2004 Jun; 36(2):167-70. PubMed ID: 19262803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of greenhouse screening for resistance to Aspergillus parasiticus infection and preharvest aflatoxin contamination in peanut.
    Anderson WF; Holbrook CC; Wilson DM
    Mycopathologia; 1996; 135(2):115-8. PubMed ID: 9091828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aflatoxin production in six peanut (Arachis hypogaea L.) genotypes infected with Aspergillus flavus and Aspergillus parasiticus, isolated from peanut production areas of Cordoba, Argentina.
    Asis R; Barrionuevo DL; Giorda LM; Nores ML; Aldao MA
    J Agric Food Chem; 2005 Nov; 53(23):9274-80. PubMed ID: 16277433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycobiota and mycotoxins in Brazilian peanut kernels from sowing to harvest.
    Gonçalez E; Nogueira JH; Fonseca H; Felicio JD; Pino FA; Corrêa B
    Int J Food Microbiol; 2008 Apr; 123(3):184-90. PubMed ID: 18295923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Streptomyces sp. ASBV-1 reduces aflatoxin accumulation by Aspergillus parasiticus in peanut grains.
    Zucchi TD; de Moraes LA; de Melo IS
    J Appl Microbiol; 2008 Dec; 105(6):2153-60. PubMed ID: 19016976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on interaction between root-knot nematode Meloidogyne javanica and wilt fungus Verticillium dahliae on olive seedlings in greenhouse.
    Saeedizadeh A; Kheiri A; Okhovat M; Hoseininejad A
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):139-43. PubMed ID: 15149103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of storage time and agroecological zone on mould incidence and aflatoxin contamination of maize from traders in Uganda.
    Kaaya AN; Kyamuhangire W
    Int J Food Microbiol; 2006 Aug; 110(3):217-23. PubMed ID: 16822572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of early harvest in the prevention of aflatoxins in peanuts during drought stress conditions.
    Martins LM; Bragagnolo N; Calori MA; Iamanaka BT; Alves MC; da Silva JJ; de Godoy IJ; Taniwaki MH
    Int J Food Microbiol; 2023 Nov; 405():110336. PubMed ID: 37541018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of ozone as a fungicidal and detoxifying agent of aflatoxins in peanuts.
    de Alencar ER; Faroni LR; Soares Nde F; da Silva WA; Carvalho MC
    J Sci Food Agric; 2012 Mar; 92(4):899-905. PubMed ID: 22095762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of soil temperature and drought on peanut pod and stem temperatures relative to Aspergillus flavus invasion and aflatoxin contamination.
    Sanders TH; Blankenship PD; Cole RJ; Hill RA
    Mycopathologia; 1984 Apr; 86(1):51-4. PubMed ID: 6429541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of Aspergillus flavus colonization and aflatoxin (AfB1) in peanut by methyleugenol.
    Sudhakar P; Latha P; Sreenivasulu Y; Reddy BV; Hemalatha TM; Balakrishna M; Reddy KR
    Indian J Exp Biol; 2009 Jan; 47(1):63-7. PubMed ID: 19317354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aflatoxin contamination of developing corn kernels.
    Amer MA
    Commun Agric Appl Biol Sci; 2005; 70(3):281-93. PubMed ID: 16637189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium re-distribution from pod and root zones and accumulation by peanut (Arachis hypogaea L.).
    Wang K; Song N; Zhao Q; van der Zee SE
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1441-8. PubMed ID: 26370815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between soil densities of Aspergillus species and colonization of wounded peanut seeds.
    Horn BW
    Can J Microbiol; 2006 Oct; 52(10):951-60. PubMed ID: 17110963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of cultural and analytical methods for determination of aflatoxin production by Mississippi Delta Aspergillus isolates.
    Abbas HK; Zablotowicz RM; Weaver MA; Horn BW; Xie W; Shier WT
    Can J Microbiol; 2004 Mar; 50(3):193-9. PubMed ID: 15105886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of Aflatoxin Production in Aspergillus Species by Selected Peanut (Arachis hypogaea) Stilbenoids.
    Sobolev V; Arias R; Goodman K; Walk T; Orner V; Faustinelli P; Massa A
    J Agric Food Chem; 2018 Jan; 66(1):118-126. PubMed ID: 29207242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Management and prevention of mycotoxins in peanuts.
    Dorner JW
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Feb; 25(2):203-8. PubMed ID: 18286410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycoflora of hazelnut (Corylus avellana L.) and aflatoxin content in hazelnut kernels artificially infected with Aspergillus parasiticus.
    Simşek O; Arici M; Demir C
    Nahrung; 2002 Jun; 46(3):194-6. PubMed ID: 12108220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of peanut tannin extracts on growth of Aspergillus parasiticus and aflatoxin production.
    Azaizeh HA; Pettit RE; Sarr BA; Phillips TD
    Mycopathologia; 1990 Jun; 110(3):125-32. PubMed ID: 2388679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.