These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18399529)

  • 1. High catalytic activities of artificial peroxidases based on supramolecular hydrogels that contain heme models.
    Wang Q; Yang Z; Ma M; Chang CK; Xu B
    Chemistry; 2008; 14(16):5073-8. PubMed ID: 18399529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and reactivity studies of a manganese 'microperoxidase' containing b-type heme.
    Ryabova ES; Nordlander E
    Dalton Trans; 2005 Apr; (7):1228-33. PubMed ID: 15782258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox properties of heme peroxidases.
    Battistuzzi G; Bellei M; Bortolotti CA; Sola M
    Arch Biochem Biophys; 2010 Aug; 500(1):21-36. PubMed ID: 20211593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A heme-peptide metalloenzyme mimetic with natural peroxidase-like activity.
    Nastri F; Lista L; Ringhieri P; Vitale R; Faiella M; Andreozzi C; Travascio P; Maglio O; Lombardi A; Pavone V
    Chemistry; 2011 Apr; 17(16):4444-53. PubMed ID: 21416513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of heme-apoprotein interactions on the activity of horseradish and wheat germ peroxidases.
    Fernández M; Rezzano I; Robinsohn A
    Biochem Biophys Res Commun; 1994 Oct; 204(1):1-6. PubMed ID: 7945347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heme electron transfer in peroxidases: the propionate e-pathway.
    Guallar V
    J Phys Chem B; 2008 Oct; 112(42):13460-4. PubMed ID: 18816089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Peroxidase/Oxidase Multiple Enzyme System Based on Supramolecular Hydrogel and Its Application as a Biocatalyst for Cascade Reactions.
    Qu R; Shen L; Qu A; Wang R; An Y; Shi L
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16694-705. PubMed ID: 26173996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A catalytic approach to estimate the redox potential of heme-peroxidases.
    Ayala M; Roman R; Vazquez-Duhalt R
    Biochem Biophys Res Commun; 2007 Jun; 357(3):804-8. PubMed ID: 17442271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired supramolecular confinement of luminol and heme proteins to enhance the chemiluminescent quantum yield.
    Wang Q; Li L; Xu B
    Chemistry; 2009; 15(13):3168-72. PubMed ID: 19206114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum mechanical/molecular mechanical study on the mechanisms of compound I formation in the catalytic cycle of chloroperoxidase: an overview on heme enzymes.
    Chen H; Hirao H; Derat E; Schlichting I; Shaik S
    J Phys Chem B; 2008 Aug; 112(31):9490-500. PubMed ID: 18597525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substitution of strictly conserved Y111 in catalase-peroxidases: Impact of remote interdomain contacts on active site structure and catalytic performance.
    Moore RL; Cook CO; Williams R; Goodwin DC
    J Inorg Biochem; 2008 Sep; 102(9):1819-24. PubMed ID: 18635265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A catalysis-based selection for peroxidase antibodies with increased activity.
    Yin J; Mills JH; Schultz PG
    J Am Chem Soc; 2004 Mar; 126(10):3006-7. PubMed ID: 15012103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Tyr residues on the protein surface of cationic cell-wall-peroxidase (CWPO-C) from poplar: potential oxidation sites for oxidative polymerization of lignin.
    Sasaki S; Nonaka D; Wariishi H; Tsutsumi Y; Kondo R
    Phytochemistry; 2008 Jan; 69(2):348-55. PubMed ID: 17910963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amphitrite ornata dehaloperoxidase: enhanced activity for the catalytically active globin using MCPBA.
    Osborne RL; Taylor LO; Han KP; Ely B; Dawson JH
    Biochem Biophys Res Commun; 2004 Nov; 324(4):1194-8. PubMed ID: 15504340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling the structure of a novel artificial heme-enzyme with peroxidase-like activity: A theoretical investigation.
    Perrella F; Raucci U; Chiariello MG; Chino M; Maglio O; Lombardi A; Rega N
    Biopolymers; 2018 Aug; 109(10):e23225. PubMed ID: 30091460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial library of low molecular-weight organo- and hydrogelators based on glycosylated amino acid derivatives by solid-phase synthesis.
    Kiyonaka S; Shinkai S; Hamachi I
    Chemistry; 2003 Feb; 9(4):976-83. PubMed ID: 12584714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperation between artificial receptors and supramolecular hydrogels for sensing and discriminating phosphate derivatives.
    Yamaguchi S; Yoshimura I; Kohira T; Tamaru S; Hamachi I
    J Am Chem Soc; 2005 Aug; 127(33):11835-41. PubMed ID: 16104762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties.
    Zederbauer M; Furtmüller PG; Brogioni S; Jakopitsch C; Smulevich G; Obinger C
    Nat Prod Rep; 2007 Jun; 24(3):571-84. PubMed ID: 17534531
    [No Abstract]   [Full Text] [Related]  

  • 19. Heme-protein covalent bonds in peroxidases and resistance to heme modification during halide oxidation.
    Huang L; Ortiz de Montellano PR
    Arch Biochem Biophys; 2006 Feb; 446(1):77-83. PubMed ID: 16375846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic analysis of semisynthetic peroxidase enzymes containing a covalent DNA-heme adduct as the cofactor.
    Fruk L; Müller J; Niemeyer CM
    Chemistry; 2006 Sep; 12(28):7448-57. PubMed ID: 16832798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.