BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1839962)

  • 1. Effect of cadmium on Ca2+ transport in brain microsomes.
    Shah J; Pant HC
    Brain Res; 1991 Dec; 566(1-2):127-30. PubMed ID: 1839962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+,Mg2+-ATPase of microsomal membranes from bovine aortic smooth muscle: effects of Sr2+ and Cd2+ on Ca2+ uptake and formation of the phosphorylated intermediate of the Ca2+,Mg2+-ATPase.
    Sumida M; Hamada M; Takenaka H; Hirata Y; Nishigauchi K; Okuda H
    J Biochem; 1986 Sep; 100(3):765-72. PubMed ID: 2946670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regucalcin increases Ca2+-ATPase activity and ATP-dependent calcium uptake in the microsomes of rat kidney cortex.
    Kurota H; Yamaguchi M
    Mol Cell Biochem; 1997 Dec; 177(1-2):201-7. PubMed ID: 9450663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alteration of Ca2+ fluxes in brain microsomes by K+ and Na+: modulation by sulfated polysaccharides and trifluoperazine.
    Rocha JB; Wolosker H; Souza DO; de Meis L
    J Neurochem; 1996 Feb; 66(2):772-8. PubMed ID: 8592151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of heavy metal on rat liver microsomal Ca2(+)-ATPase and Ca2+ sequestering. Relation to SH groups.
    Zhang GH; Yamaguchi M; Kimura S; Higham S; Kraus-Friedmann N
    J Biol Chem; 1990 Feb; 265(4):2184-9. PubMed ID: 1688849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Mg-ATP-dependent Ca2+ transport in cat pancreatic microsomes.
    Kribben A; Tyrakowski T; Schulz I
    Am J Physiol; 1983 May; 244(5):G480-90. PubMed ID: 6133452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of regucalcin as an activator of sarcoplasmic reticulum Ca2+-ATPase activity in rat heart muscle.
    Yamaguchi M; Nakajima R
    J Cell Biochem; 2002; 86(1):184-93. PubMed ID: 12112029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Hg2+ and CH3Hg+ on Ca2+ fluxes in rat brain microsomes.
    Freitas AJ; Rocha JB; Wolosker H; Souza DO
    Brain Res; 1996 Nov; 738(2):257-64. PubMed ID: 8955521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ischemia-induced inhibition of calcium uptake into rat brain microsomes mediated by Mg2+/Ca2+ ATPase.
    Parsons JT; Churn SB; DeLorenzo RJ
    J Neurochem; 1997 Mar; 68(3):1124-34. PubMed ID: 9048758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+ transport studied with arsenazo III in Tetrahymena microsomes. Effects of calcium ionophore A23187 and trifluoperazine.
    Muto Y; Nozawa Y
    Biochim Biophys Acta; 1985 May; 815(3):410-6. PubMed ID: 3158350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2,3-Dimercaptopropanol inhibits Ca2+ transport in microsomes from brain but not from fast-skeletal muscle.
    Quinhones EB; Souza DO; Rocha JB
    Neurochem Res; 2001 Mar; 26(3):251-6. PubMed ID: 11495549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP-dependent uptake of Ca2+ by a microsomal fraction from rat incisor odontoblasts.
    Granström G; Linde A
    Calcif Tissue Int; 1981; 33(2):125-8. PubMed ID: 6452191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actions of cadmium on basolateral plasma membrane proteins involved in calcium uptake by fish intestine.
    Schoenmakers TJ; Klaren PH; Flik G; Lock RA; Pang PK; Bonga SE
    J Membr Biol; 1992 May; 127(3):161-72. PubMed ID: 1322993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food dye, erythrosin B, inhibits ATP-dependent calcium ion transport by brain microsomes.
    Heffron JJ; O'Callaghan AM; Duggan PF
    Biochem Int; 1984 Nov; 9(5):557-62. PubMed ID: 6098274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomolar concentrations of Cd2+ inhibit Ca2+ transport systems in plasma membranes and intracellular Ca2+ stores in intestinal epithelium.
    Verbost PM; Senden MH; van Os CH
    Biochim Biophys Acta; 1987 Aug; 902(2):247-52. PubMed ID: 2956989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsomal Ca2+ flux modulation as an indicator of heavy metal toxicity.
    Pentyala S; Ruggeri J; Veerraju A; Yu Z; Bhatia A; Desaiah D; Vig P
    Indian J Exp Biol; 2010 Jul; 48(7):737-43. PubMed ID: 20929057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early developmental changes in intracellular Ca2+ stores in rat brain.
    Singh AK
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Jun; 123(2):163-72. PubMed ID: 10425736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between Ca2+-stimulated adenosine triphosphatase activity and Ca2+ uptake in microsomal fraction of rat submandibular gland.
    Saito H; Matsukawa R; Aoki H
    Int J Biochem; 1985; 17(6):723-6. PubMed ID: 3161764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calmodulin stimulation of calcium uptake and (Ca2+-Mg2+)-ATPase activities in microsomes from canine tracheal smooth muscle.
    Hogaboom GK; Fedan JS
    Biochem Biophys Res Commun; 1981 Mar; 99(2):737-44. PubMed ID: 6112991
    [No Abstract]   [Full Text] [Related]  

  • 20. Role of MMP-2 in oxidant-mediated regulation of Ca2+ uptake in microsomes of bovine pulmonary artery smooth muscle.
    Mandal A; Chakraborti T; Choudhury R; Ghosh B; Chakraborti S
    Indian J Biochem Biophys; 2005 Feb; 42(1):19-27. PubMed ID: 23923577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.