These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 18399665)

  • 41. Synthesis of highly fluorescent glutathione-capped Zn(x)Hg(1-x)Se quantum dot and its application for sensing copper ion.
    Liu FC; Chen YM; Lin JH; Tseng WL
    J Colloid Interface Sci; 2009 Sep; 337(2):414-9. PubMed ID: 19524936
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals.
    Vanmaekelbergh D; Liljeroth P
    Chem Soc Rev; 2005 Apr; 34(4):299-312. PubMed ID: 15778764
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photoinduced electron transfer from phycoerythrin to colloidal metal semiconductor nanoparticles.
    Kathiravan A; Chandramohan M; Renganathan R; Sekar S
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Apr; 72(3):496-501. PubMed ID: 19083264
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis of functionalized CdTe/CdS QDs for spectrofluorimetric detection of BSA.
    Yu Y; Lai Y; Zheng X; Wu J; Long Z; Liang C
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(5):1356-61. PubMed ID: 17482866
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fluorescence intermittency of silicon nanocrystals and other quantum dots: a unified two-dimensional diffusion-controlled reaction model.
    Tang J
    J Chem Phys; 2007 Sep; 127(11):111105. PubMed ID: 17887820
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bionanofabrication of metallic and semiconductor nanoparticle arrays using S-layer protein lattices with different lateral spacings and geometries.
    Mark SS; Bergkvist M; Yang X; Teixeira LM; Bhatnagar P; Angert ER; Batt CA
    Langmuir; 2006 Apr; 22(8):3763-74. PubMed ID: 16584254
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ge quantum dot memory structure with laterally ordered highly dense arrays of Ge dots.
    Nassiopoulou AG; Olzierski A; Tsoi E; Berbezier I; Karmous A
    J Nanosci Nanotechnol; 2007 Jan; 7(1):316-21. PubMed ID: 17455497
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dopant-induced formation of branched CdS nanocrystals.
    Hsu YJ; Lu SY
    Small; 2008 Jul; 4(7):951-5. PubMed ID: 18576279
    [No Abstract]   [Full Text] [Related]  

  • 49. [Quantum dots in oncological surgery: the future for surgical margin status].
    Marchal F; Pic E; Pons T; Dubertret B; Bolotine L; Guillemin F
    Bull Cancer; 2008 Dec; 95(12):1149-53. PubMed ID: 19091647
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nucleation kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals.
    Xie R; Li Z; Peng X
    J Am Chem Soc; 2009 Oct; 131(42):15457-66. PubMed ID: 19775131
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cytotoxicity of metal and semiconductor nanoparticles indicated by cellular micromotility.
    Tarantola M; Schneider D; Sunnick E; Adam H; Pierrat S; Rosman C; Breus V; Sönnichsen C; Basché T; Wegener J; Janshoff A
    ACS Nano; 2009 Jan; 3(1):213-22. PubMed ID: 19206269
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chemically fabricated magnetic quantum dots of InP:Mn.
    Sahoo Y; Poddar P; Srikanth H; Lucey DW; Prasad PN
    J Phys Chem B; 2005 Aug; 109(32):15221-5. PubMed ID: 16852927
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Semiconductor nanocrystals for biological imaging.
    Fu A; Gu W; Larabell C; Alivisatos AP
    Curr Opin Neurobiol; 2005 Oct; 15(5):568-75. PubMed ID: 16150591
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Non-blinking semiconductor colloidal quantum dots for biology, optoelectronics and quantum optics.
    Spinicelli P; Mahler B; Buil S; Quélin X; Dubertret B; Hermier JP
    Chemphyschem; 2009 Apr; 10(6):879-82. PubMed ID: 19294684
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigation of the crystallization process in 2 nm CdSe quantum dots.
    Chen X; Samia AC; Lou Y; Burda C
    J Am Chem Soc; 2005 Mar; 127(12):4372-5. PubMed ID: 15783219
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Insights into the kinetics of semiconductor nanocrystal nucleation and growth.
    Rempel JY; Bawendi MG; Jensen KF
    J Am Chem Soc; 2009 Apr; 131(12):4479-89. PubMed ID: 19275244
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of the internal heterostructure of highly luminescent quantum dot-quantum well nanocrystals.
    Santra PK; Viswanatha R; Daniels SM; Pickett NL; Smith JM; O'Brien P; Sarma DD
    J Am Chem Soc; 2009 Jan; 131(2):470-7. PubMed ID: 19140789
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging.
    Carion O; Mahler B; Pons T; Dubertret B
    Nat Protoc; 2007; 2(10):2383-90. PubMed ID: 17947980
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method.
    Deng Z; Yan H; Liu Y
    J Am Chem Soc; 2009 Dec; 131(49):17744-5. PubMed ID: 19928806
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optical detection of glucose by means of metal nanoparticles or semiconductor quantum dots.
    Bahshi L; Freeman R; Gill R; Willner I
    Small; 2009 Mar; 5(6):676-80. PubMed ID: 19226598
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.