These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
600 related articles for article (PubMed ID: 18399704)
1. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family. Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704 [TBL] [Abstract][Full Text] [Related]
2. On the role of the cis Hoogsteen:sugar-edge family of base pairs in platforms and triplets-quantum chemical insights into RNA structural biology. Sharma P; Sponer JE; Sponer J; Sharma S; Bhattacharyya D; Mitra A J Phys Chem B; 2010 Mar; 114(9):3307-20. PubMed ID: 20163171 [TBL] [Abstract][Full Text] [Related]
3. Protonation of base pairs in RNA: context analysis and quantum chemical investigations of their geometries and stabilities. Chawla M; Sharma P; Halder S; Bhattacharyya D; Mitra A J Phys Chem B; 2011 Feb; 115(6):1469-84. PubMed ID: 21254753 [TBL] [Abstract][Full Text] [Related]
4. Trans Hoogsteen/sugar edge base pairing in RNA. Structures, energies, and stabilities from quantum chemical calculations. Mládek A; Sharma P; Mitra A; Bhattacharyya D; Sponer J; Sponer JE J Phys Chem B; 2009 Feb; 113(6):1743-55. PubMed ID: 19152254 [TBL] [Abstract][Full Text] [Related]
5. Sugar edge/sugar edge base pairs in RNA: stabilities and structures from quantum chemical calculations. Sponer JE; Leszczynski J; Sychrovský V; Sponer J J Phys Chem B; 2005 Oct; 109(39):18680-9. PubMed ID: 16853403 [TBL] [Abstract][Full Text] [Related]
6. Leading RNA tertiary interactions: structures, energies, and water insertion of A-minor and P-interactions. A quantum chemical view. Sponer JE; Réblova K; Mokdad A; Sychrovský V; Leszczynski J; Sponer J J Phys Chem B; 2007 Aug; 111(30):9153-64. PubMed ID: 17602515 [TBL] [Abstract][Full Text] [Related]
7. Structure, stability, and dynamics of canonical and noncanonical base pairs: quantum chemical studies. Roy A; Panigrahi S; Bhattacharyya M; Bhattacharyya D J Phys Chem B; 2008 Mar; 112(12):3786-96. PubMed ID: 18318519 [TBL] [Abstract][Full Text] [Related]
8. Non-Watson-Crick base pairing in RNA. quantum chemical analysis of the cis Watson-Crick/sugar edge base pair family. Sponer JE; Spacková N; Kulhanek P; Leszczynski J; Sponer J J Phys Chem A; 2005 Mar; 109(10):2292-301. PubMed ID: 16838999 [TBL] [Abstract][Full Text] [Related]
9. Isostericity and tautomerism of base pairs in nucleic acids. Westhof E FEBS Lett; 2014 Aug; 588(15):2464-9. PubMed ID: 24950426 [TBL] [Abstract][Full Text] [Related]
10. Principles of RNA base pairing: structures and energies of the trans Watson-Crick/sugar edge base pairs. Sponer JE; Spackova N; Leszczynski J; Sponer J J Phys Chem B; 2005 Jun; 109(22):11399-410. PubMed ID: 16852393 [TBL] [Abstract][Full Text] [Related]
11. Post Hartree-Fock studies of the canonical Watson-Crick DNA base pairs: molecular structure and the nature of stability. Danilov VI; Anisimov VM J Biomol Struct Dyn; 2005 Feb; 22(4):471-82. PubMed ID: 15588110 [TBL] [Abstract][Full Text] [Related]
12. Theoretical study of the scalar coupling constants across the noncovalent contacts in RNA base pairs: the cis- and trans-watson-crick/sugar edge base pair family. Vokacova Z; Sponer J; Sponer JE; Sychrovský V J Phys Chem B; 2007 Sep; 111(36):10813-24. PubMed ID: 17713941 [TBL] [Abstract][Full Text] [Related]
13. Structure and energy of non-canonical basepairs: comparison of various computational chemistry methods with crystallographic ensembles. Panigrahi S; Pal R; Bhattacharyya D J Biomol Struct Dyn; 2011 Dec; 29(3):541-56. PubMed ID: 22066539 [TBL] [Abstract][Full Text] [Related]
14. Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study. Mondal M; Mukherjee S; Halder S; Bhattacharyya D Biopolymers; 2015 Jun; 103(6):328-38. PubMed ID: 25652776 [TBL] [Abstract][Full Text] [Related]
15. Prediction of interaction energies of substituted hydrogen-bonded Watson-Crick cytosine:guanine(8X) base pairs. Xue C; Popelier PL J Phys Chem B; 2009 Mar; 113(10):3245-50. PubMed ID: 19260717 [TBL] [Abstract][Full Text] [Related]
16. Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations? Svozil D; Hobza P; Sponer J J Phys Chem B; 2010 Jan; 114(2):1191-203. PubMed ID: 20000584 [TBL] [Abstract][Full Text] [Related]
17. The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation. Brovarets' OO; Yurenko YP; Hovorun DM J Biomol Struct Dyn; 2015; 33(8):1624-52. PubMed ID: 25350312 [TBL] [Abstract][Full Text] [Related]
18. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels. Dabkowska I; Gonzalez HV; Jurecka P; Hobza P J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422 [TBL] [Abstract][Full Text] [Related]
19. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces. Shankar A; Jagota A; Mittal J J Phys Chem B; 2012 Oct; 116(40):12088-94. PubMed ID: 22967176 [TBL] [Abstract][Full Text] [Related]
20. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding. Csaszar K; Spacková N; Stefl R; Sponer J; Leontis NB J Mol Biol; 2001 Nov; 313(5):1073-91. PubMed ID: 11700064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]