These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Bioaccumulation, bioavailability and environmental fate of chlorophenol impurities, polychlorinated hydroxydiphenylethers and their methoxy analogues. Koistinen J; Kukkonen JV; Sormunen A; Mannila E; Herve S; Vartiainen T Chemosphere; 2007 Jul; 68(7):1382-91. PubMed ID: 17350079 [TBL] [Abstract][Full Text] [Related]
3. Desorption and bioavailability of spiked pentabromo diphenyl ether and tetrachlorodibenzo(p)dioxin in contaminated sediments. Sormunen AJ; Leppänen MT; Kukkonen JV Arch Environ Contam Toxicol; 2009 May; 56(4):670-9. PubMed ID: 18779939 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the role of desorption in bioavailability of sediment-associated contaminants using oligochaetes, semipermeable membrane devices and Tenax extraction. Leppänen MT; Kukkonen JV Environ Pollut; 2006 Mar; 140(1):150-63. PubMed ID: 16144733 [TBL] [Abstract][Full Text] [Related]
5. Examining the role of temperature and sediment-chemical contact time on desorption and bioavailability of sediment-associated tetrabromo diphenyl ether and benzo(a)pyrene. Sormunen AJ; Leppänen MT; Kukkonen JV Ecotoxicol Environ Saf; 2009 May; 72(4):1234-41. PubMed ID: 18973943 [TBL] [Abstract][Full Text] [Related]
6. Predicting the bioavailability of sediment-associated polybrominated diphenyl ethers using a 45-d sequential Tenax extraction. Liu M; Tian S; Chen P; Zhu L Chemosphere; 2011 Oct; 85(3):424-31. PubMed ID: 21890174 [TBL] [Abstract][Full Text] [Related]
7. Bioavailability of PCBs from field-collected sediments: application of Tenax extraction and matrix-SPME techniques. Trimble TA; You J; Lydy MJ Chemosphere; 2008 Mar; 71(2):337-44. PubMed ID: 17942136 [TBL] [Abstract][Full Text] [Related]
8. Effects of aging and sediment composition on hexachlorobenzene desorption resistance compared to oral bioavailability in rats. Chai Y; Davis JW; Saghir SA; Qiu X; Budinsky RA; Bartels MJ Chemosphere; 2008 Jun; 72(3):432-41. PubMed ID: 18396312 [TBL] [Abstract][Full Text] [Related]
9. Investigating the role of desorption on the bioavailability of sediment-associated 3,4,3',4'-tetrachlorobiphenyl in benthic invertebrates. Leppänen MT; Landrum PF; Kukkonen JV; Greenberg MS; Burton GA; Robinson SD; Gossiaux DC Environ Toxicol Chem; 2003 Dec; 22(12):2861-71. PubMed ID: 14713025 [TBL] [Abstract][Full Text] [Related]
10. Predicting the bioavailability of sediment-associated spiked compounds by using the polyoxymethylene passive sampling and tenax extraction methods in sediments from three river basins in Europe. Sormunen AJ; Tuikka AI; Akkanen J; Leppänen MT; Kukkonen JV Arch Environ Contam Toxicol; 2010 Jul; 59(1):80-90. PubMed ID: 20058002 [TBL] [Abstract][Full Text] [Related]
11. Bioavailability of sorbed phenanthrene and permethrin in sediments to Chironomus tentans. Cui X; Hunter W; Yang Y; Chen Y; Gan J Aquat Toxicol; 2010 Jun; 98(1):83-90. PubMed ID: 20170969 [TBL] [Abstract][Full Text] [Related]
12. Bioavailability of sediment-associated PCDD/Fs and PCDEs: relative importance of contaminant and sediment characteristics and biological factors. Lyytikäinen M; Hirva P; Minkkinen P; Hämäläinen H; Rantalainen AL; Mikkelson P; Paasivirta J; Kukkonen JV Environ Sci Technol; 2003 Sep; 37(17):3926-34. PubMed ID: 12967115 [TBL] [Abstract][Full Text] [Related]
13. Bioavailability of hydrophobic organic contaminants in sediment with different particle-size distributions. Mehler WT; Li H; Pang J; Sun B; Lydy MJ; You J Arch Environ Contam Toxicol; 2011 Jul; 61(1):74-82. PubMed ID: 20953950 [TBL] [Abstract][Full Text] [Related]
14. Formation of polychlorinated diphenyl ethers from condensation of chlorophenols with chlorobenzenes. Liu W; Zheng M; Liu W; Ma X; Qian Y; Zhang B Environ Sci Pollut Res Int; 2008 Jan; 15(1):84-8. PubMed ID: 18306892 [TBL] [Abstract][Full Text] [Related]
15. Polybrominated diphenyl ethers in mudsnails (Cipangopaludina cahayensis) and sediments from an electronic waste recycling region in South China. Yang ZZ; Zhao XR; Qin ZF; Fu S; Li XH; Qin XF; Xu XB; Jin ZX Bull Environ Contam Toxicol; 2009 Feb; 82(2):206-10. PubMed ID: 18982234 [TBL] [Abstract][Full Text] [Related]
16. Influence of sediment ingestion and exposure concentration on the bioavailable fraction of sediment-associated tetrachlorobiphenyl in oligochaetes. Sormunen AJ; Leppänen MT; Kukkonen JV Environ Toxicol Chem; 2008 Apr; 27(4):854-63. PubMed ID: 18333684 [TBL] [Abstract][Full Text] [Related]
17. Persistent organic pollutants in two fish species of Percidae and sediment from the Sulejowski Reservoir in central Poland. Waszak I; Dabrowska H Chemosphere; 2009 May; 75(9):1135-43. PubMed ID: 19344928 [TBL] [Abstract][Full Text] [Related]
18. Effect of aging on desorption kinetics of sediment-associated pyrethroids. Xu Y; Gan J; Wang Z; Spurlock F Environ Toxicol Chem; 2008 Jun; 27(6):1293-301. PubMed ID: 18466039 [TBL] [Abstract][Full Text] [Related]
19. Bioavailability and biotransformation of sediment-associated pyrethroid insecticides in Lumbriculus variegatus. You J; Brennan A; Lydy MJ Chemosphere; 2009 Jun; 75(11):1477-82. PubMed ID: 19278716 [TBL] [Abstract][Full Text] [Related]
20. Tenax extraction of sediments to estimate desorption and bioavailability of hydrophobic contaminants: a literature review. Lydy MJ; Harwood AD; Nutile SA; Landrum PF Integr Environ Assess Manag; 2015 Apr; 11(2):208-20. PubMed ID: 25377271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]