These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 18400379)

  • 1. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters.
    Murthy ZV; Chaudhari LB
    J Hazard Mater; 2008 Dec; 160(1):70-7. PubMed ID: 18400379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model.
    Chaudhari LB; Murthy ZV
    J Hazard Mater; 2010 Aug; 180(1-3):309-15. PubMed ID: 20452729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of landfill leachates by nanofiltration.
    Chaudhari LB; Murthy ZV
    J Environ Manage; 2010 May; 91(5):1209-17. PubMed ID: 20149518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and Theoretical Analysis of Lead Pb
    Hadi S; Mohammed AA; Al-Jubouri SM; Abd MF; Majdi HS; Alsalhy QF; Rashid KT; Ibrahim SS; Salih IK; Figoli A
    Membranes (Basel); 2020 Jun; 10(7):. PubMed ID: 32629753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous removal of nickel and cobalt from aqueous stream by cross flow micellar enhanced ultrafiltration.
    Karate VD; Marathe KV
    J Hazard Mater; 2008 Sep; 157(2-3):464-71. PubMed ID: 18291578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling of arsenic (III) removal from aqueous solution using film theory combined Spiegler-Kedem model: pilot-scale study.
    Rajendran RM; Garg S; Bajpai S
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):13886-13899. PubMed ID: 33205270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of nickel ions from simulated electroplating rinse water by electrodeionization process.
    Lu H; Wang J; Yan B; Bu S
    Water Sci Technol; 2010; 61(3):729-35. PubMed ID: 20150710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofiltration process of glyphosate simulated wastewater.
    Liu ZY; Xie M; Ni F; Xu YH
    Water Sci Technol; 2012; 65(5):816-22. PubMed ID: 22339015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solute rejection by porous thin film composite nanofiltration membranes at high feed water recoveries.
    Sharma RR; Chellam S
    J Colloid Interface Sci; 2008 Dec; 328(2):353-66. PubMed ID: 18930248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin.
    Dizge N; Keskinler B; Barlas H
    J Hazard Mater; 2009 Aug; 167(1-3):915-26. PubMed ID: 19231079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column.
    Vijayaraghavan K; Jegan J; Palanivelu K; Velan M
    J Hazard Mater; 2004 Sep; 113(1-3):223-30. PubMed ID: 15363535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the steric, electric, and dielectric exclusion model on the basis of salt rejection rate and membrane potential measurements.
    Lanteri Y; Fievet P; Szymczyk A
    J Colloid Interface Sci; 2009 Mar; 331(1):148-55. PubMed ID: 19081573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boron removal from aqueous solution by direct contact membrane distillation.
    Hou D; Wang J; Sun X; Luan Z; Zhao C; Ren X
    J Hazard Mater; 2010 May; 177(1-3):613-9. PubMed ID: 20080336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of operating parameters on the arsenic removal by nanofiltration.
    Figoli A; Cassano A; Criscuoli A; Mozumder MS; Uddin MT; Islam MA; Drioli E
    Water Res; 2010 Jan; 44(1):97-104. PubMed ID: 19781734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of target anions, chromate (Cr (VI)), arsenate (As (V)), and perchlorate (ClO4-), through RO, NF, and UF membranes.
    Yoon J; Amy G; Yoon Y
    Water Sci Technol; 2005; 51(6-7):327-34. PubMed ID: 16003993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of process water containing surfactants by nanofiltration--investigation and modelling of mass transport.
    Wendler B; Goers B; Wozny G
    Water Sci Technol; 2002; 46(4-5):287-92. PubMed ID: 12361023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes.
    Yoon J; Amy G; Chung J; Sohn J; Yoon Y
    Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin transport across porous charged membranes: Effect of the electrostatic interaction.
    Zhang S; Matsumoto H; Saito K; Minagawa M; Tanioka A
    Biotechnol Prog; 2009; 25(5):1379-86. PubMed ID: 19585552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective separation of copper(II) and nickel(II) from aqueous media using the complexation-ultrafiltration process.
    Molinari R; Poerio T; Argurio P
    Chemosphere; 2008 Jan; 70(3):341-8. PubMed ID: 17825876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.