BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 18400549)

  • 1. Validity of the local nonlinear arterial flow theory: influence of the upstream and downstream conditions.
    Bensalah A; Flaud P
    Med Eng Phys; 2008 Nov; 30(9):1159-67. PubMed ID: 18400549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anharmonic analysis of arterial blood pressure and flow pulses.
    Voltairas PA; Fotiadis DI; Massalas CV; Michalis LK
    J Biomech; 2005 Jul; 38(7):1423-31. PubMed ID: 15922753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart.
    Formaggia L; Lamponi D; Tuveri M; Veneziani A
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):273-88. PubMed ID: 17132614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wave intensity amplification and attenuation in non-linear flow: implications for the calculation of local reflection coefficients.
    Mynard J; Penny DJ; Smolich JJ
    J Biomech; 2008 Dec; 41(16):3314-21. PubMed ID: 19019371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel wave reflection model of the human arterial system.
    Zhang H; Li JK
    Cardiovasc Eng; 2009 Jun; 9(2):39-48. PubMed ID: 19495973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exponential taper in arteries: an exact solution of its effect on blood flow velocity waveforms and impedance.
    Myers LJ; Capper WL
    Med Eng Phys; 2004 Mar; 26(2):147-55. PubMed ID: 15036182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Numerical simulation of the relationship between blood pressure and blood stream of arteries].
    Shi X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1121-3, 1127. PubMed ID: 16422080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multiscale approach for modelling wave propagation in an arterial segment.
    Pontrelli G
    Comput Methods Biomech Biomed Engin; 2004 Apr; 7(2):79-89. PubMed ID: 15203956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quasi-lumped model for the peripheral distortion of the arterial pulse.
    Voltairas PA; Charalambopoulos A; Fotiadis DI; Michalis LK
    Math Biosci Eng; 2012 Jan; 9(1):175-98. PubMed ID: 22229403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity analysis and model assessment: mathematical models for arterial blood flow and blood pressure.
    Ellwein LM; Tran HT; Zapata C; Novak V; Olufsen MS
    Cardiovasc Eng; 2008 Jun; 8(2):94-108. PubMed ID: 18080757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of noninvasive blood pressure measurement.
    Hayashi S; Hayase T; Shirai A; Maruyama M
    J Biomech Eng; 2006 Oct; 128(5):680-7. PubMed ID: 16995754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of wave speed and wave separation in the arteries using diameter and velocity.
    Feng J; Khir AW
    J Biomech; 2010 Feb; 43(3):455-62. PubMed ID: 19892359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a fluid-structure interaction numerical model for predicting flow transients in arteries.
    Kanyanta V; Ivankovic A; Karac A
    J Biomech; 2009 Aug; 42(11):1705-12. PubMed ID: 19482285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forward and backward waves in the arterial system: nonlinear separation using Riemann invariants.
    Pythoud F; Stergiopulos N; Meister JJ
    Technol Health Care; 1995 Dec; 3(3):201-7. PubMed ID: 8749866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The numerical simulation of pulsatile flow in a tapered blood vessel].
    Qiu L; Fan Y; Dong B; Yuan Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):558-61. PubMed ID: 15357431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robust method for detection of linear and nonlinear interactions: application to renal blood flow dynamics.
    Feng L; Siu K; Moore LC; Marsh DJ; Chon KH
    Ann Biomed Eng; 2006 Feb; 34(2):339-53. PubMed ID: 16496083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear elastic mechanics of mock arteries: empirical versus theoretically predicted pulsatile stent deflection.
    Rajesh R; Conti JC; Strope ER
    Biomed Sci Instrum; 2007; 43():54-62. PubMed ID: 17487057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of LES of steady transitional flow in an idealized stenosed axisymmetric artery model with a RANS transitional model.
    Tan FP; Wood NB; Tabor G; Xu XY
    J Biomech Eng; 2011 May; 133(5):051001. PubMed ID: 21599092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of pulsatile flow on LDL transport in the arterial wall.
    Sun N; Wood NB; Hughes AD; Thom SA; Xu XY
    Ann Biomed Eng; 2007 Oct; 35(10):1782-90. PubMed ID: 17629792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.