These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 18400550)
1. The effect of the subcutaneous fat on the transfer of current through skin and into muscle. Petrofsky J Med Eng Phys; 2008 Nov; 30(9):1168-76. PubMed ID: 18400550 [TBL] [Abstract][Full Text] [Related]
2. The transfer of current through skin and muscle during electrical stimulation with sine, square, Russian and interferential waveforms. Petrofsky J; Laymon M; Prowse M; Gunda S; Batt J J Med Eng Technol; 2009; 33(2):170-81. PubMed ID: 19205995 [TBL] [Abstract][Full Text] [Related]
3. Interrelationships between body fat and skin blood flow and the current required for electrical stimulation of human muscle. Petrofsky JS; Suh HJ; Gunda S; Prowse M; Batt J Med Eng Phys; 2008 Sep; 30(7):931-6. PubMed ID: 18243763 [TBL] [Abstract][Full Text] [Related]
4. Distribution of electrical stimulation current in a planar multilayer anisotropic tissue. Mesin L; Merletti R IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):660-70. PubMed ID: 18270002 [TBL] [Abstract][Full Text] [Related]
5. Dry heat, moist heat and body fat: are heating modalities really effective in people who are overweight? Petrofsky J; Bains G; Prowse M; Gunda S; Berk L; Raju C; Ethiraju G; Vanarasa D; Madani P J Med Eng Technol; 2009; 33(5):361-9. PubMed ID: 19499453 [TBL] [Abstract][Full Text] [Related]
6. A multiple-layer finite-element model of the surface EMG signal. Lowery MM; Stoykov NS; Taflove A; Kuiken TA IEEE Trans Biomed Eng; 2002 May; 49(5):446-54. PubMed ID: 12002176 [TBL] [Abstract][Full Text] [Related]
7. Effect of subcutaneous fat thickness and surface electrode configuration during neuromuscular electrical stimulation. Doheny EP; Caulfield BM; Minogue CM; Lowery MM Med Eng Phys; 2010 Jun; 32(5):468-74. PubMed ID: 20417145 [TBL] [Abstract][Full Text] [Related]
8. The effects of skin moisture and subcutaneous fat thickness on the ability of the skin to dissipate heat in young and old subjects, with and without diabetes, at three environmental room temperatures. McLellan K; Petrofsky JS; Bains G; Zimmerman G; Prowse M; Lee S Med Eng Phys; 2009 Mar; 31(2):165-72. PubMed ID: 18945635 [TBL] [Abstract][Full Text] [Related]
9. Body composition modeling in the calf using an equivalent circuit model of multi-frequency bioimpedance analysis. Zhu F; Leonard EF; Levin NW Physiol Meas; 2005 Apr; 26(2):S133-43. PubMed ID: 15798226 [TBL] [Abstract][Full Text] [Related]
10. Effect of electrode array position and subcutaneous tissue thickness on conduction velocity estimation in upper trapezius muscle. Cescon C; Rebecchi P; Merletti R J Electromyogr Kinesiol; 2008 Aug; 18(4):628-36. PubMed ID: 17369051 [TBL] [Abstract][Full Text] [Related]
11. A finite-element analysis of the effect of muscle insulation and shielding on the surface EMG signal. Stoykov NS; Lowery MM; Kuiken TA IEEE Trans Biomed Eng; 2005 Jan; 52(1):117-21. PubMed ID: 15651570 [TBL] [Abstract][Full Text] [Related]
12. Conductivities of pig dermis and subcutaneous fat measured with rectangular pulse electrical current. Cheng K; Tarjan PP; Mertz PM Bioelectromagnetics; 1996; 17(6):458-66. PubMed ID: 8986363 [TBL] [Abstract][Full Text] [Related]
13. Electrical current density model from surface electrodes. Waugaman WA Biomed Sci Instrum; 1997; 34():131-6. PubMed ID: 9603026 [TBL] [Abstract][Full Text] [Related]
14. A new method for noninvasive measurement of multilayer tissue conductivity and structure using divided electrodes. Zhao X; Kinouchi Y; Yasuno E; Gao D; Iritani T; Morimoto T; Takeuchi M IEEE Trans Biomed Eng; 2004 Feb; 51(2):362-70. PubMed ID: 14765709 [TBL] [Abstract][Full Text] [Related]
15. Subcutaneous fat alterations resulting from an upper-body resistance training program. Kostek MA; Pescatello LS; Seip RL; Angelopoulos TJ; Clarkson PM; Gordon PM; Moyna NM; Visich PS; Zoeller RF; Thompson PD; Hoffman EP; Price TB Med Sci Sports Exerc; 2007 Jul; 39(7):1177-85. PubMed ID: 17596787 [TBL] [Abstract][Full Text] [Related]
16. Independence of myoelectric control signals examined using a surface EMG model. Lowery MM; Stoykov NS; Kuiken TA IEEE Trans Biomed Eng; 2003 Jun; 50(6):789-93. PubMed ID: 12814247 [TBL] [Abstract][Full Text] [Related]
17. Heat transfer to deep tissue: the effect of body fat and heating modality. Petrofsky JS; Laymon M J Med Eng Technol; 2009; 33(5):337-48. PubMed ID: 19440919 [TBL] [Abstract][Full Text] [Related]
18. Fat and hydration monitoring by abdominal bioimpedance analysis: data interpretation by hierarchical electrical modeling. Scharfetter H; Brunner P; Mayer M; Brandstätter B; Hinghofer-Szalkay H IEEE Trans Biomed Eng; 2005 Jun; 52(6):975-82. PubMed ID: 15977727 [TBL] [Abstract][Full Text] [Related]
19. An analytical model for surface EMG generation in volume conductors with smooth conductivity variations. Mesin L; Farina D IEEE Trans Biomed Eng; 2006 May; 53(5):773-9. PubMed ID: 16686399 [TBL] [Abstract][Full Text] [Related]
20. A novel approach for precise simulation of the EMG signal detected by surface electrodes. Farina D; Merletti R IEEE Trans Biomed Eng; 2001 Jun; 48(6):637-46. PubMed ID: 11396594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]