These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 18400572)

  • 41. Sintering behavior and apatite formation of diopside prepared by coprecipitation process.
    Iwata NY; Lee GH; Tokuoka Y; Kawashima N
    Colloids Surf B Biointerfaces; 2004 Apr; 34(4):239-45. PubMed ID: 15261063
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prospective use of electrospun ultra-fine silicate fibers for bone tissue engineering.
    Sakai S; Yamada Y; Yamaguchi T; Kawakami K
    Biotechnol J; 2006 Sep; 1(9):958-62. PubMed ID: 16941440
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simple surface modification of poly(epsilon-caprolactone) for apatite deposition from simulated body fluid.
    Oyane A; Uchida M; Choong C; Triffitt J; Jones J; Ito A
    Biomaterials; 2005 May; 26(15):2407-13. PubMed ID: 15585244
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface structure and apatite-forming ability of polyethylene substrates irradiated by oxygen cluster ion beams.
    Kawashita M; Itoh S; Araki R; Miyamoto K; Takaoka GH
    J Biomed Mater Res A; 2007 Sep; 82(4):995-1003. PubMed ID: 17335033
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transformation of nacre coatings into apatite coatings in phosphate buffer solution at low temperature.
    Guo Y; Zhou Y
    J Biomed Mater Res A; 2008 Aug; 86(2):510-21. PubMed ID: 17994555
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanism and kinetics of apatite formation on nanocrystalline TiO2 coatings: a quartz crystal microbalance study.
    Yang Z; Si S; Zeng X; Zhang C; Dai H
    Acta Biomater; 2008 May; 4(3):560-8. PubMed ID: 18053780
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vitro hydroxyapatite forming ability and dissolution of tobermorite nanofibers.
    Lin K; Chang J; Cheng R
    Acta Biomater; 2007 Mar; 3(2):271-6. PubMed ID: 17234465
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of heat treatment on the bioactivity of surface-modified titanium in calcium solution.
    Sultana R; Hamada K; Ichikawa T; Asaoka K
    Biomed Mater Eng; 2009; 19(2-3):193-204. PubMed ID: 19581714
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Osteoclastic resorption of apatite formed on apatite- and wollastonite-containing glass-ceramic by a simulated body fluid.
    Yamada S; Nakamura T; Kokubo T; Oka M; Yamamuro T
    J Biomed Mater Res; 1994 Nov; 28(11):1357-63. PubMed ID: 7829566
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biomimetic remineralization of human dentin using promising innovative calcium-silicate hybrid "smart" materials.
    Gandolfi MG; Taddei P; Siboni F; Modena E; De Stefano ED; Prati C
    Dent Mater; 2011 Nov; 27(11):1055-69. PubMed ID: 21840044
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation and characterization of bioactive mesoporous wollastonite - Polycaprolactone composite scaffold.
    Wei J; Chen F; Shin JW; Hong H; Dai C; Su J; Liu C
    Biomaterials; 2009 Feb; 30(6):1080-8. PubMed ID: 19019424
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid.
    Hirakata LM; Kon M; Asaoka K
    Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chemical surface modification of high-strength porous Ti compacts by spark plasma sintering.
    Sakamoto Y; Asaoka K; Kon M; Matsubara T; Yoshida K
    Biomed Mater Eng; 2006; 16(2):83-91. PubMed ID: 16477117
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis.
    Caridade SG; Merino EG; Alves NM; Bermudez Vde Z; Boccaccini AR; Mano JF
    J Mech Behav Biomed Mater; 2013 Apr; 20():173-83. PubMed ID: 23466499
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simple surface modification of poly(epsilon-caprolactone) to induce its apatite-forming ability.
    Oyane A; Uchida M; Yokoyama Y; Choong C; Triffitt J; Ito A
    J Biomed Mater Res A; 2005 Oct; 75(1):138-45. PubMed ID: 16044403
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Apatite formation on alkaline-treated dense TiO2 coatings deposited using the solution precursor plasma spray process.
    Chen D; Jordan EH; Gell M; Wei M
    Acta Biomater; 2008 May; 4(3):553-9. PubMed ID: 18207469
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vitro bioactivity evaluation of titanium and niobium metals with different surface morphologies.
    Wang XJ; Li YC; Lin JG; Yamada Y; Hodgson PD; Wen CE
    Acta Biomater; 2008 Sep; 4(5):1530-5. PubMed ID: 18485846
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of calcium titanate as apatite growth promoter.
    Coreño J; Coreño O
    J Biomed Mater Res A; 2005 Nov; 75(2):478-84. PubMed ID: 16088899
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biomimetic apatite coatings--carbonate substitution and preferred growth orientation.
    Müller L; Conforto E; Caillard D; Müller FA
    Biomol Eng; 2007 Nov; 24(5):462-6. PubMed ID: 17855164
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coating of bone-like apatite for development of bioactive materials for bone reconstruction.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    Biomed Mater; 2007 Dec; 2(4):R17-23. PubMed ID: 18458474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.