These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 18401405)

  • 1. Microscopic theory of the extraordinary optical transmission.
    Liu H; Lalanne P
    Nature; 2008 Apr; 452(7188):728-31. PubMed ID: 18401405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new generation of sensors based on extraordinary optical transmission.
    Gordon R; Sinton D; Kavanagh KL; Brolo AG
    Acc Chem Res; 2008 Aug; 41(8):1049-57. PubMed ID: 18605739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical properties of a nanosized hole in a thin metallic film.
    Park TH; Mirin N; Lassiter JB; Nehl CL; Halas NJ; Nordlander P
    ACS Nano; 2008 Jan; 2(1):25-32. PubMed ID: 19206544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission resonances through aperiodic arrays of subwavelength apertures.
    Matsui T; Agrawal A; Nahata A; Vardeny ZV
    Nature; 2007 Mar; 446(7135):517-21. PubMed ID: 17392781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-field optical images of subwavelength annular aperture arrays exhibiting an extraordinary transmission.
    Poujet Y; Salvi J; Baida FI; van Labeke D; Perentes A; Santschi C; Hoffmann P
    J Microsc; 2008 Feb; 229(Pt 2):203-9. PubMed ID: 18304073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmon polariton analogue to Young's double-slit experiment.
    Zia R; Brongersma ML
    Nat Nanotechnol; 2007 Jul; 2(7):426-9. PubMed ID: 18654327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical theory of extraordinary optical transmission through realistic metallic screens.
    Delgado V; Marqués R; Jelinek L
    Opt Express; 2010 Mar; 18(7):6506-15. PubMed ID: 20389673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-chip surface-based detection with nanohole arrays.
    De Leebeeck A; Kumar LK; de Lange V; Sinton D; Gordon R; Brolo AG
    Anal Chem; 2007 Jun; 79(11):4094-100. PubMed ID: 17447728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-mode model of the extraordinary optical transmission without plasmons.
    Xie Y; Liu H; Jia H; Zhong Y
    Opt Express; 2015 Mar; 23(5):5749-62. PubMed ID: 25836805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Second-harmonic generation from metal-film nanohole arrays.
    Lu H; Liu X; Zhou R; Gong Y; Mao D
    Appl Opt; 2010 Apr; 49(12):2347-51. PubMed ID: 20411015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays.
    Marcet Z; Hang ZH; Chan CT; Kravchenko I; Bower JE; Cirelli RA; Klemens F; Mansfield WM; Miner JF; Pai CS; Chan HB
    Opt Lett; 2010 Jul; 35(13):2124-6. PubMed ID: 20596167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission.
    van Beijnum F; Rétif C; Smiet CB; Liu H; Lalanne P; van Exter MP
    Nature; 2012 Dec; 492(7429):411-4. PubMed ID: 23257884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive microscopic model of the extraordinary optical transmission.
    Liu H; Lalanne P
    J Opt Soc Am A Opt Image Sci Vis; 2010 Dec; 27(12):2542-50. PubMed ID: 21119737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of the polarization dependence of the optical transmission in subwavelength metal hole arrays.
    Zhao Q; Li C; Zhou YS; Wang HY
    J Phys Condens Matter; 2011 Jan; 23(1):015005. PubMed ID: 21406820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propagation lengths of surface plasmon polaritons on metal films with arrays of subwavelength holes by infrared imaging spectroscopy.
    Cilwa KE; Rodriguez KR; Heer JM; Malone MA; Corwin LD; Coe JV
    J Chem Phys; 2009 Aug; 131(6):061101. PubMed ID: 19691370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic antiresonance through subwavelength hole arrays.
    Maystre D; Fehrembach AL; Popov E
    J Opt Soc Am A Opt Image Sci Vis; 2011 Mar; 28(3):342-55. PubMed ID: 21383816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite nanoparticle nanoslit arrays: a novel platform for LSPR mediated subwavelength optical transmission.
    Kofke MJ; Waldeck DH; Walker GC
    Opt Express; 2010 Apr; 18(8):7705-13. PubMed ID: 20588611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of extraordinary optical transmission through subwavelength hole arrays.
    Martín-Moreno L; García-Vidal FJ; Lezec HJ; Pellerin KM; Thio T; Pendry JB; Ebbesen TW
    Phys Rev Lett; 2001 Feb; 86(6):1114-7. PubMed ID: 11178023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon dynamics in arrays of subwavelength holes: the role of optical interband transitions.
    Halté V; Benabbas A; Bigot JY
    Opt Express; 2008 Jul; 16(15):11611-7. PubMed ID: 18648482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications.
    Yue W; Wang Z; Yang Y; Li J; Wu Y; Chen L; Ooi B; Wang X; Zhang XX
    Nanoscale; 2014 Jul; 6(14):7917-23. PubMed ID: 24898441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.