BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 18401752)

  • 1. Continuous production of ethanol from starch using glucoamylase and yeast co-immobilized in pectin gel.
    Giordano RL; Trovati J; Schmidell W
    Appl Biochem Biotechnol; 2008 Mar; 147(1-3):47-61. PubMed ID: 18401752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the performance of a continuous process for the production of ethanol from starch.
    Trovati J; Giordano RC; Giordano RL
    Appl Biochem Biotechnol; 2009 May; 156(1-3):76-90. PubMed ID: 19240991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of biocatalyst to produce ethanol from starch. Coimmobilization of glucoamylase and yeast in gel.
    Giordano RL; Hirano PC; Gonçalves LR; Netto WS
    Appl Biochem Biotechnol; 2000; 84-86():643-54. PubMed ID: 10849824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol production from starch hydrolyzates using Zymomonas mobilis and glucoamylase entrapped in polyvinylalcohol hydrogel.
    Rebros M; Rosenberg M; Grosová Z; Kristofíková L; Paluch M; Sipöcz M
    Appl Biochem Biotechnol; 2009 Sep; 158(3):561-70. PubMed ID: 19089646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase.
    Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A
    Enzyme Microb Technol; 2012 May; 50(6-7):343-7. PubMed ID: 22500903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the production of ethanol between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using unpretreated cassava pulp and enzyme cocktail.
    Zhu M; Li P; Gong X; Wang J
    Biosci Biotechnol Biochem; 2012; 76(4):671-8. PubMed ID: 22484928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase.
    Kondo A; Shigechi H; Abe M; Uyama K; Matsumoto T; Takahashi S; Ueda M; Tanaka A; Kishimoto M; Fukuda H
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):291-6. PubMed ID: 11935178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An innovative biocatalyst for production of ethanol from xylose in a continuous bioreactor.
    Silva CR; Zangirolami TC; Rodrigues JP; Matugi K; Giordano RC; Giordano RL
    Enzyme Microb Technol; 2012 Jan; 50(1):35-42. PubMed ID: 22133438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous ethanol production from cassava through simultaneous saccharification and fermentation by self-flocculating yeast Saccharomyces cerevisiae CHFY0321.
    Choi GW; Kang HW; Moon SK; Chung BW
    Appl Biochem Biotechnol; 2010 Mar; 160(5):1517-27. PubMed ID: 19396636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel circulating loop bioreactor with cells immobilized in loofa ( Luffa cylindrica) sponge for the bioconversion of raw cassava starch to ethanol.
    Roble ND; Ogbonna JC; Tanaka H
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):671-8. PubMed ID: 12664145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds.
    Farid MA; El-Enshasy HA; Noor El-Deen AM
    J Basic Microbiol; 2002; 42(3):162-71. PubMed ID: 12111743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
    Najafpour G; Younesi H; Syahidah Ku Ismail K
    Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of ethanol from kitchen waste by using flocculating Saccharomyces cerevisiae KF-7.
    Wang YF; Tan L; Wang T; Sun ZY; Tang YQ; Kida K
    Environ Technol; 2017 Feb; 38(3):316-325. PubMed ID: 27241454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae.
    El-Dalatony MM; Kurade MB; Abou-Shanab RAI; Kim H; Salama ES; Jeon BH
    Bioresour Technol; 2016 Nov; 219():98-105. PubMed ID: 27479800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and direct fermentation of starch to ethanol by sake yeast strains displaying fungal glucoamylases.
    Kotaka A; Sahara H; Hata Y; Abe Y; Kondo A; Kato-Murai M; Kuroda K; Ueda M
    Biosci Biotechnol Biochem; 2008 May; 72(5):1376-9. PubMed ID: 18460787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raw starch fermentation to ethanol by an industrial distiller's yeast strain of Saccharomyces cerevisiae expressing glucoamylase and α-amylase genes.
    Kim HR; Im YK; Ko HM; Chin JE; Kim IC; Lee HB; Bai S
    Biotechnol Lett; 2011 Aug; 33(8):1643-8. PubMed ID: 21479627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The study of the influence of temperature and initial glucose concentration on the fermentation process in the presence of Saccharomyces cerevisiae yeast strain immobilized on starch gels by reversed-flow gas chromatography.
    Lainioti GCh; Kapolos J; Koliadima A; Karaiskakis G
    Prep Biochem Biotechnol; 2012; 42(5):489-506. PubMed ID: 22897770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioethanol production from uncooked raw starch by immobilized surface-engineered yeast cells.
    Chen JP; Wu KW; Fukuda H
    Appl Biochem Biotechnol; 2008 Mar; 145(1-3):59-67. PubMed ID: 18425612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High bioethanol titre from Manihot glaziovii through fed-batch simultaneous saccharification and fermentation in Automatic Gas Potential Test System.
    Moshi AP; Crespo CF; Badshah M; Hosea KM; Mshandete AM; Mattiasson B
    Bioresour Technol; 2014 Mar; 156():348-56. PubMed ID: 24534761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and alpha-amylase to produce ethanol.
    Wang R; Wang D; Gao X; Hong J
    Biotechnol Prog; 2014; 30(2):338-47. PubMed ID: 24478139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.