These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 18402697)
1. Reducing the false positive rate in the non-parametric analysis of molecular coevolution. Codoñer FM; O'Dea S; Fares MA BMC Evol Biol; 2008 Apr; 8():106. PubMed ID: 18402697 [TBL] [Abstract][Full Text] [Related]
2. A novel method for detecting intramolecular coevolution: adding a further dimension to selective constraints analyses. Fares MA; Travers SA Genetics; 2006 May; 173(1):9-23. PubMed ID: 16547113 [TBL] [Abstract][Full Text] [Related]
3. Accurate simulation and detection of coevolution signals in multiple sequence alignments. Ackerman SH; Tillier ER; Gatti DL PLoS One; 2012; 7(10):e47108. PubMed ID: 23091608 [TBL] [Abstract][Full Text] [Related]
4. Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L. Ruiz-González MX; Fares MA BMC Evol Biol; 2013 Jul; 13():156. PubMed ID: 23875653 [TBL] [Abstract][Full Text] [Related]
5. Covariation Is a Poor Measure of Molecular Coevolution. Talavera D; Lovell SC; Whelan S Mol Biol Evol; 2015 Sep; 32(9):2456-68. PubMed ID: 25944916 [TBL] [Abstract][Full Text] [Related]
6. Coevolving protein residues: maximum likelihood identification and relationship to structure. Pollock DD; Taylor WR; Goldman N J Mol Biol; 1999 Mar; 287(1):187-98. PubMed ID: 10074416 [TBL] [Abstract][Full Text] [Related]
7. Coevolutionary patterns in cytochrome c oxidase subunit I depend on structural and functional context. Wang ZO; Pollock DD J Mol Evol; 2007 Nov; 65(5):485-95. PubMed ID: 17955155 [TBL] [Abstract][Full Text] [Related]
8. New methods to measure residues coevolution in proteins. Gao H; Dou Y; Yang J; Wang J BMC Bioinformatics; 2011 May; 12():206. PubMed ID: 21612664 [TBL] [Abstract][Full Text] [Related]
9. Coevolution in defining the functional specificity. Chakrabarti S; Panchenko AR Proteins; 2009 Apr; 75(1):231-40. PubMed ID: 18831050 [TBL] [Abstract][Full Text] [Related]
10. Detecting coevolution in and among protein domains. Yeang CH; Haussler D PLoS Comput Biol; 2007 Nov; 3(11):e211. PubMed ID: 17983264 [TBL] [Abstract][Full Text] [Related]
11. Identification of coevolving residues and coevolution potentials emphasizing structure, bond formation and catalytic coordination in protein evolution. Little DY; Chen L PLoS One; 2009; 4(3):e4762. PubMed ID: 19274093 [TBL] [Abstract][Full Text] [Related]
12. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions. Larson SM; Di Nardo AA; Davidson AR J Mol Biol; 2000 Oct; 303(3):433-46. PubMed ID: 11031119 [TBL] [Abstract][Full Text] [Related]
13. Why should we care about molecular coevolution? Codoñer FM; Fares MA Evol Bioinform Online; 2008 Feb; 4():29-38. PubMed ID: 19204805 [TBL] [Abstract][Full Text] [Related]
14. Functional coevolutionary networks of the Hsp70-Hop-Hsp90 system revealed through computational analyses. Travers SA; Fares MA Mol Biol Evol; 2007 Apr; 24(4):1032-44. PubMed ID: 17267421 [TBL] [Abstract][Full Text] [Related]
15. Prediction of contact residue pairs based on co-substitution between sites in protein structures. Miyazawa S PLoS One; 2013; 8(1):e54252. PubMed ID: 23342110 [TBL] [Abstract][Full Text] [Related]
16. Intra-Protein Coevolution Is Increasingly Functional with Greater Proximity to Fertilization. Kwiatkowski M; Asif AR; Schumacher J; Brenig B; Zischler H; Herlyn H Cytogenet Genome Res; 2020; 160(6):295-308. PubMed ID: 32683365 [TBL] [Abstract][Full Text] [Related]
17. Identifying coevolutionary patterns in human leukocyte antigen (HLA) molecules. Jiang X; Fares MA Evolution; 2010 May; 64(5):1429-45. PubMed ID: 19930454 [TBL] [Abstract][Full Text] [Related]