These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 18402702)
1. Significance analysis of microarray for relative quantitation of LC/MS data in proteomics. Roxas BA; Li Q BMC Bioinformatics; 2008 Apr; 9():187. PubMed ID: 18402702 [TBL] [Abstract][Full Text] [Related]
2. Design and analysis of quantitative differential proteomics investigations using LC-MS technology. Bukhman YV; Dharsee M; Ewing R; Chu P; Topaloglou T; Le Bihan T; Goh T; Duewel H; Stewart II; Wisniewski JR; Ng NF J Bioinform Comput Biol; 2008 Feb; 6(1):107-23. PubMed ID: 18324749 [TBL] [Abstract][Full Text] [Related]
3. An assessment of false discovery rates and statistical significance in label-free quantitative proteomics with combined filters. Li Q; Roxas BA BMC Bioinformatics; 2009 Feb; 10():43. PubMed ID: 19187558 [TBL] [Abstract][Full Text] [Related]
4. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Elias JE; Haas W; Faherty BK; Gygi SP Nat Methods; 2005 Sep; 2(9):667-75. PubMed ID: 16118637 [TBL] [Abstract][Full Text] [Related]
6. Critical assessment of alignment procedures for LC-MS proteomics and metabolomics measurements. Lange E; Tautenhahn R; Neumann S; Gröpl C BMC Bioinformatics; 2008 Sep; 9():375. PubMed ID: 18793413 [TBL] [Abstract][Full Text] [Related]
7. Comparative analysis of statistical methods used for detecting differential expression in label-free mass spectrometry proteomics. Langley SR; Mayr M J Proteomics; 2015 Nov; 129():83-92. PubMed ID: 26193490 [TBL] [Abstract][Full Text] [Related]
8. Quantification of uncertainty of peptide retention time predictions from a sequence-based model in LC-MS/MS proteomics experiments. Yanofsky CM; Kearney RE; Lesimple S; Bergeron JJ; Boismenu D; Carrillo B; Bell AW Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1221-4. PubMed ID: 18002183 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive analysis of proteins of pH fractionated samples using monolithic LC/MS/MS, intact MW measurement and MALDI-QIT-TOF MS. Yoo C; Patwa TH; Kreunin P; Miller FR; Huber CG; Nesvizhskii AI; Lubman DM J Mass Spectrom; 2007 Mar; 42(3):312-34. PubMed ID: 17206599 [TBL] [Abstract][Full Text] [Related]
10. Chromatographic alignment of LC-MS and LC-MS/MS datasets by genetic algorithm feature extraction. Palmblad M; Mills DJ; Bindschedler LV; Cramer R J Am Soc Mass Spectrom; 2007 Oct; 18(10):1835-43. PubMed ID: 17720530 [TBL] [Abstract][Full Text] [Related]
11. A new and sensitive on-line liquid chromatography/mass spectrometric approach for top-down protein analysis: the comprehensive analysis of human growth hormone in an E. coli lysate using a hybrid linear ion trap/Fourier transform ion cyclotron resonance mass spectrometer. Wu SL; Jardine I; Hancock WS; Karger BL Rapid Commun Mass Spectrom; 2004; 18(19):2201-7. PubMed ID: 15384137 [TBL] [Abstract][Full Text] [Related]
12. A simple peak detection and label-free quantitation algorithm for chromatography-mass spectrometry. Aoshima K; Takahashi K; Ikawa M; Kimura T; Fukuda M; Tanaka S; Parry HE; Fujita Y; Yoshizawa AC; Utsunomiya S; Kajihara S; Tanaka K; Oda Y BMC Bioinformatics; 2014 Nov; 15(1):376. PubMed ID: 25420746 [TBL] [Abstract][Full Text] [Related]
13. Understanding the influence of post-excite radius and axial confinement on quantitative proteomic measurements using Fourier transform ion cyclotron resonance mass spectrometry. Frahm JL; Velez CM; Muddiman DC Rapid Commun Mass Spectrom; 2007; 21(7):1196-204. PubMed ID: 17330212 [TBL] [Abstract][Full Text] [Related]
14. Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: Reproducibility, linearity, and application with complex proteomes. Wang G; Wu WW; Zeng W; Chou CL; Shen RF J Proteome Res; 2006 May; 5(5):1214-23. PubMed ID: 16674111 [TBL] [Abstract][Full Text] [Related]
15. Experimental Null Method to Guide the Development of Technical Procedures and to Control False-Positive Discovery in Quantitative Proteomics. Shen X; Hu Q; Li J; Wang J; Qu J J Proteome Res; 2015 Oct; 14(10):4147-57. PubMed ID: 26051676 [TBL] [Abstract][Full Text] [Related]
16. Data pre-processing in liquid chromatography-mass spectrometry-based proteomics. Zhang X; Asara JM; Adamec J; Ouzzani M; Elmagarmid AK Bioinformatics; 2005 Nov; 21(21):4054-9. PubMed ID: 16150809 [TBL] [Abstract][Full Text] [Related]
17. Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline. Dowsey AW; Dunn MJ; Yang GZ Bioinformatics; 2008 Apr; 24(7):950-7. PubMed ID: 18310057 [TBL] [Abstract][Full Text] [Related]
18. A geometric approach for the alignment of liquid chromatography-mass spectrometry data. Lange E; Gröpl C; Schulz-Trieglaff O; Leinenbach A; Huber C; Reinert K Bioinformatics; 2007 Jul; 23(13):i273-81. PubMed ID: 17646306 [TBL] [Abstract][Full Text] [Related]
19. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. Salih E Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747 [TBL] [Abstract][Full Text] [Related]
20. Bayesian estimation for molecular profile reconstruction in proteomics based on liquid chromatography and mass spectrometry. Strubel G; Giovannelli JF; Paulus C; Gerfault L; Grangeat P Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5980-3. PubMed ID: 18003376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]