BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 18402784)

  • 41. Novel purification method for mammalian seminal plasma phospholipid-binding proteins reveals the presence of a novel member of this family of protein in stallion seminal fluid.
    Ménard M; Nauc V; Lazure C; Vaillancourt D; Manjunath P
    Mol Reprod Dev; 2003 Dec; 66(4):349-57. PubMed ID: 14579411
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conserved core tryptophans of FnII domains are crucial for the membranolytic and chaperone-like activities of bovine seminal plasma protein PDC-109.
    Singh BP; Asthana A; Basu A; Tangirala R; Mohan Rao C; Swamy MJ
    FEBS Lett; 2020 Feb; 594(3):509-518. PubMed ID: 31552690
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ligand-mediated conformational changes and positioning of tryptophans in reconstituted human sodium/D-glucose cotransporter1 (hSGLT1) probed by tryptophan fluorescence.
    Kumar A; Tyagi NK; Kinne RK
    Biophys Chem; 2007 Apr; 127(1-2):69-77. PubMed ID: 17222499
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Seminal plasma proteins: functions and interaction with protective agents during semen preservation.
    Manjunath P; Bergeron A; Lefebvre J; Fan J
    Soc Reprod Fertil Suppl; 2007; 65():217-28. PubMed ID: 17644964
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes.
    Zhao L; Feng SS
    J Colloid Interface Sci; 2004 Jun; 274(1):55-68. PubMed ID: 15120278
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Factors Influencing the Chaperone-Like Activity of Major Proteins of Mammalian Seminal Plasma, Equine HSP-1/2 and Bovine PDC-109: Effect of Membrane Binding, pH and Ionic Strength.
    Kumar CS; Singh BP; Alim S; Swamy MJ
    Adv Exp Med Biol; 2018; 1112():53-68. PubMed ID: 30637690
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural and molecular characterization of equine sperm-binding fibronectin-II module proteins.
    Ekhlasi-Hundrieser M; Schäfer B; Kirchhoff C; Hess O; Bellair S; Müller P; Töpfer-Petersen E
    Mol Reprod Dev; 2005 Jan; 70(1):45-57. PubMed ID: 15515052
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Seminal plasma proteins regulate the association of lipids and proteins within detergent-resistant membrane domains of bovine spermatozoa.
    Girouard J; Frenette G; Sullivan R
    Biol Reprod; 2008 May; 78(5):921-31. PubMed ID: 18235103
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Localization and regulation of plasma membrane Ca(2+)-ATPase in bovine spermatozoa.
    Triphan J; Aumüller G; Brandenburger T; Wilhelm B
    Eur J Cell Biol; 2007 May; 86(5):265-73. PubMed ID: 17397965
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fluorescence quenching methods to study lipid-protein interactions.
    Carney J; East JM; Mall S; Marius P; Powl AM; Wright JN; Lee AG
    Curr Protoc Protein Sci; 2006 Sep; Chapter 19():Unit 19.12. PubMed ID: 18429301
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lipid binding specificity of bovine α-lactalbumin: a multidimensional approach.
    Chaudhuri A; Chattopadhyay A
    Biochim Biophys Acta; 2014 Aug; 1838(8):2078-86. PubMed ID: 24802274
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cytoskeletal protein binding kinetics at planar phospholipid membranes.
    Mc Kiernan AE; MacDonald RI; MacDonald RC; Axelrod D
    Biophys J; 1997 Oct; 73(4):1987-98. PubMed ID: 9336194
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Binding patterns of bovine seminal plasma proteins A1/A2, 30 kDa and osteopontin on ejaculated sperm before and after incubation with isthmic and ampullary oviductal fluid.
    Souza CE; Moura AA; Monaco E; Killian GJ
    Anim Reprod Sci; 2008 Apr; 105(1-2):72-89. PubMed ID: 18207674
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interaction of heat shock protein 90 B1 (Hsp90B1) with liposome reveals its potential role in protection the integrity of lipid membranes.
    Li P; Zhang M; Zou Y; Sun Z; Sun C; Geng Z; Xu W; Wang D
    Int J Biol Macromol; 2018 Jan; 106():1250-1257. PubMed ID: 28851640
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction of mammalian seminal plasma protein PDC-109 with cholesterol: implications for a putative CRAC domain.
    Scolari S; Müller K; Bittman R; Herrmann A; Müller P
    Biochemistry; 2010 Oct; 49(42):9027-31. PubMed ID: 20863067
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Changes in the lipid and protein components of thymus cell membrane during lipid peroxidation].
    Dreval' VI
    Biokhimiia; 1991 Sep; 56(9):1613-9. PubMed ID: 1747425
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemical and physical requirements for lipid extraction by bovine binder of sperm BSP1.
    Therrien A; Manjunath P; Lafleur M
    Biochim Biophys Acta; 2013 Feb; 1828(2):543-51. PubMed ID: 22960042
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Membrane-bound states of alpha-lactalbumin: implications for the protein stability and conformation.
    Cawthern KM; Permyakov E; Berliner LJ
    Protein Sci; 1996 Jul; 5(7):1394-405. PubMed ID: 8819172
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sensing Tryptophan Microenvironment of Amyloid Protein Utilizing Wavelength-Selective Fluorescence Approach.
    Chakraborty H; Chattopadhyay A
    J Fluoresc; 2017 Nov; 27(6):1995-2000. PubMed ID: 28687983
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cofactor and tryptophan accessibility and unfolding of brain glutamate decarboxylase.
    Rust E; Martin DL; Chen CH
    Arch Biochem Biophys; 2001 Aug; 392(2):333-40. PubMed ID: 11488610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.