These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 18403012)

  • 21. Fabrication and characterization of PVA/CS-PCL/gel multi-scale electrospun scaffold: simulating extracellular matrix for enhanced cellular infiltration and proliferation.
    Dou Y; Fa X; Gu Y; Liang L; Wen J; Qin A; Ou J
    J Biomater Sci Polym Ed; 2020 Apr; 31(6):729-746. PubMed ID: 31928136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microstructure-dependent mechanical properties of electrospun core-shell scaffolds at multi-scale levels.
    Horner CB; Ico G; Johnson J; Zhao Y; Nam J
    J Mech Behav Biomed Mater; 2016 Jun; 59():207-219. PubMed ID: 26774618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Drug-Induced Hybrid Electrospun Poly-Capro-Lactone: Cell-Derived Extracellular Matrix Scaffold for Liver Tissue Engineering.
    Grant R; Hay DC; Callanan A
    Tissue Eng Part A; 2017 Jul; 23(13-14):650-662. PubMed ID: 28437180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds.
    Surucu S; Turkoglu Sasmazel H
    Int J Biol Macromol; 2016 Nov; 92():321-328. PubMed ID: 27387013
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression.
    Allo BA; Lin S; Mequanint K; Rizkalla AS
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7574-83. PubMed ID: 23826710
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells.
    Carlberg B; Axell MZ; Nannmark U; Liu J; Kuhn HG
    Biomed Mater; 2009 Aug; 4(4):045004. PubMed ID: 19567936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering.
    Nguyen TH; Bao TQ; Park I; Lee BT
    J Biomater Appl; 2013 Nov; 28(4):514-28. PubMed ID: 23075833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of setup orientation on blend electrospinning of poly-ε-caprolactone-gelatin scaffolds for vascular tissue engineering.
    Suresh S; Gryshkov O; Glasmacher B
    Int J Artif Organs; 2018 Nov; 41(11):801-810. PubMed ID: 30376770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrospun blends of natural and synthetic polymers as scaffolds for tissue engineering.
    Li M; Mondrinos MJ; Chen X; Lelkes PI
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():5858-61. PubMed ID: 17281592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling.
    Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS
    BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering.
    Jana S; Bhagia A; Lerman A
    Biomed Mater; 2019 Oct; 14(6):065014. PubMed ID: 31593551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrospun gelatin/PCL and collagen/PCL scaffolds for modulating responses of bone marrow endothelial progenitor cells.
    Hu Y; Feng B; Zhang W; Yan C; Yao Q; Shao C; Yu F; Li F; Fu Y
    Exp Ther Med; 2019 May; 17(5):3717-3726. PubMed ID: 30988757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering.
    Yoshimoto H; Shin YM; Terai H; Vacanti JP
    Biomaterials; 2003 May; 24(12):2077-82. PubMed ID: 12628828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds.
    Zhang Y; Ouyang H; Lim CT; Ramakrishna S; Huang ZM
    J Biomed Mater Res B Appl Biomater; 2005 Jan; 72(1):156-65. PubMed ID: 15389493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering.
    Brugmans MM; Soekhradj-Soechit RS; van Geemen D; Cox M; Bouten CV; Baaijens FP; Driessen-Mol A
    Tissue Eng Part A; 2016 Jan; 22(1-2):123-32. PubMed ID: 26466917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering.
    Kijeńska E; Prabhakaran MP; Swieszkowski W; Kurzydlowski KJ; Ramakrishna S
    J Biomed Mater Res B Appl Biomater; 2012 May; 100(4):1093-102. PubMed ID: 22438340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development and Characterization of Furfuryl-Gelatin Electrospun Scaffolds for Cardiac Tissue Engineering.
    Nagiah N; El Khoury R; Othman MH; Akimoto J; Ito Y; Roberson DA; Joddar B
    ACS Omega; 2022 Apr; 7(16):13894-13905. PubMed ID: 35559153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrospun protein fibers as matrices for tissue engineering.
    Li M; Mondrinos MJ; Gandhi MR; Ko FK; Weiss AS; Lelkes PI
    Biomaterials; 2005 Oct; 26(30):5999-6008. PubMed ID: 15894371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.